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ABSTRACT 

Remote sensing data has been successfully used to enhance sugarcane monitoring and 

management, in topics such as yield estimation, health anomaly detection, or variety classification. 

Specifically, variety classification is an essential objective for optimizing crop management, as it can 

guide strategies such as plant renovation, pest control, or yield estimation. A literature review allowed 

identifying that the integration of diverse satellite platforms to enhance time series for sugarcane variety 

classification has not been explored. This strategy can improve the temporal density of available imagery 

in our study area, Costa Rica, with frequent cloud cover. Therefore, our research proposed to classify 

six sugarcane varieties using an additive approach (aggregating them in four variety groups) and 

employing parametric and non-parametric algorithms on harmonized data from Sentinel-2 and Landsat-

8/9. Validation was done at both pixel and plot scales. The best classifications were achieved using 

green and near infrared bands, along with the Enhanced Bloom Index and Normalized Difference 

Infrared Index vegetation indices. Regarding temporal dynamics, the most relevant months were 

September, November, and December, corresponding to advanced growth cycle stages. Support Vector 

Machine and Random Forest provided the best classification accuracies. At the pixel scale, the overall 

accuracy of all groups exceeded 0.86, with a slight decrease as the number of varieties increased. When 

validation was done at plot scale, the overall accuracy remained above 0.89 in all the groups. These 

achievements were suitable and valuable for sugarcane sustainable planning and decision-making. 

 

Keywords: variety classification; support vector machine; random forest; discriminant analysis; spectral 

bands; vegetations indices.
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CLASIFICACIÓN DE VARIEDADES DE CAÑA DE AZÚCAR CON DATOS ARMONIZADOS DE 

SENTINEL-2 Y LANDSAT-8/9 USANDO MÉTODOS PARAMÉTRICOS Y NO-PARAMÉTRICOS 

 

RESUMEN 

Los datos de teledetección han mejorado el monitoreo y la gestión de la caña de azúcar en 

aspectos como la estimación de rendimientos, la detección de problemas sanitarios o la clasificación de 

variedades. Específicamente, la clasificación de variedades permite optimizar la gestión del cultivo, ya 

que puede orientar estrategias de renovación, control de plagas o la estimación de rendimiento. La 

revisión de literatura permitió identificar que la integración de plataformas satelitales para mejorar las 

series temporales en la clasificación de variedades de caña de azúcar no ha sido explorada. Esta 

estrategia aumenta la disponibilidad de imágenes en zonas con alta nubosidad, como en nuestra área de 

estudio en Costa Rica. Esta investigación propuso clasificar variedades de caña de azúcar mediante un 

enfoque aditivo (agregadas en cuatro grupos de variedades) y el uso de algoritmos paramétricos y no 

paramétricos sobre datos armonizados de Sentinel-2 y Landsat-8/9. La validación se realizó a escala de 

píxel y lote. Las mejores clasificaciones utilizaron las bandas verde e infrarrojo cercano, junto con los 

índices de vegetación Enhanced Bloom Index y Normalized Difference Infrared Index. En cuanto a la 

dinámica temporal, los meses más relevantes fueron septiembre, noviembre y diciembre, 

correspondientes a etapas avanzadas del ciclo de crecimiento. Los algoritmos máquina de vectores de 

soporte y bosque aleatorio proporcionaron las mejores exactitudes de clasificación. A escala de píxel, la 

exactitud general en todos los grupos superó 0.86, con una ligera disminución cuando aumentó el 

número de variedades. A escala de lote, la exactitud general fue superior a 0.89. Estos resultados son 

valiosos para la toma de decisiones en la producción de caña de azúcar. 

 

Palabras clave: clasificación de variedades; máquina de vectores de soporte; bosque aleatorio; análisis 

discriminante; bandas espectrales; índices de vegetación. 

 

1. Introduction 

Sugarcane production in Costa Rica is relatively low compared to the largest sugarcane-producing 

countries (FAO 2024). Nonetheless, this production makes significant economic and social 

contributions to the regional and national economy, generating more than 16 million USD annually in 

taxes and social contributions (LAICA 2025). The country is divided in six producing regions according 

to La Liga Agrícola Industrial de la Caña de Azúcar (LAICA), a public institution that organizes Costa 

Rican sugarcane producers. 

The sugarcane (Saccharum officinarum) crop is well-known for its high capacity to concentrate 

sucrose within the stalks. This perennial grass is grown in tropical and subtropical environments and has 

four phenological stages characterized by changes in biomass production throughout the growth cycle. 

For a better development, it requires optimal weather conditions, management activities and nutriments 

(Manzoor et al. 2023). The first stage is the seed and germination, which can occur after new planting 

or due to ratooning, causing partial soil cover with vegetation (Allison et al. 2007). The second stage is 

tillering and canopy development, which allows a rapid growth of sprouted plant, resulting in a complete 

soil cover. The third stage is great growth, during which high foliar development allows the interception 

of a high percentage of solar radiation, and the stalks elongate rapidly (Inman-Bamber 1994). The last 

stage is the maturation, characterized by an increase in sucrose concentration in the stalks, leading to a 

reduction in leaf area due to the yellowish and shedding of leaves (Cock 2003). Each phenological stage 

lasting approximately ninety days. 

The global importance of the sugarcane as a source of food and energy, along with its ideal 

conditions for monitoring using Earth Observation (EO) data, has facilitated the development of 

decision-making tools based on remote sensing (RS) technologies. The main applications of RS in 

sugarcane cultivation include crop mapping, variety classification, crop growth anomaly, health 

monitoring, and yield estimation (Abdel-Rahman & Ahmed 2008, Som-Ard et al. 2021). The common 

goals of these applications are to increase the productivity, enhance understanding of sugarcane growth 

cycle, improve the decision-making through spatial information, and promote crop sustainability. 
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Specifically, the challenge of improving sugarcane productivity has driven the selection and 

development of sugarcane varieties adapted to local conditions. In some cases, the varieties planted are 

correctly identified but in others not, which become a limitation for guiding strategies such as 

renovation, pest control, or yield estimation (Apan et al. 2004, Galvão et al. 2005). 

In cases where the sugarcane varieties are unknown, some studies have developed algorithms that 

use RS data to identify them. From a literature review, most research aimed to discriminate sugarcane 

varieties using RS data obtained from original bands and/or vegetation indices (VIs) (Appendix 1). One 

of the earliest studies on sugarcane variety classification was conducted by Apan et al. (2004) who 

evaluated the separability of eight sugarcane varieties using discriminant analysis (DA) through a 

Hyperion image. The results showed an overall classification accuracy (OA) of 97.0 % for five varieties, 

which decreased to 74 % when eight varieties were included. The best predictor variables were VIs 

generated from bands located in the visible and Near-Infrared (NIR) region. Galvão et al. (2005), also 

using a Hyperion image, assessed the discrimination of five key sugarcane varieties also using DA. 

Their findings indicated a classification accuracy of 87.5 % for four varieties using visible, NIR and 

Shortwave Infrared (SWIR) bands. Fortes and Demattê (2006), using Landsat-7 images, evaluated the 

discrimination of four sugarcane varieties using individual bands and discriminant equations, obtaining 

an OA of 93.6 %. Part of their results demonstrated that the NIR band was the most effective for 

classification of varieties. Similarly, Everingham et al. (2007) evaluated the classification of nine 

sugarcane varieties using diverse discriminant analysis and machine learning techniques, obtaining the 

best results (around an OA of 85.0 %) with Support Vector Machine (SVM) and Random Forest (RF) 

algorithms. Murillo-Sandoval et al. (2011) evaluated two Landsat-7 images to discriminate between two 

sugarcane varieties using individual bands and VIs and achieving an OA of 80.8 %. The most relevant 

variables were the Green, NIR and SWIR bands when the crop had between four and five months of 

crop development. Duft et al. (2019) assessed the classification of 25 sugarcane varieties through 

original bands and VIs derived from three Sentinel-2; using the RF classification algorithm they 

achieved an OA of 86.0 % being the SWIR bands the most important. Finally, Kai et al. (2022) 

compared different non-parametric methods to classify four sugarcane varieties using reflectance bands 

and VIs from Sentinel-2 images. The highest classification accuracy (99.5 %) was obtained using the 

SVM algorithm, while the most appropriate variables were Red-Edge and SWIR bands.  

Although these studies have achieved important advances in the classification of varieties, there is 

still a need to evaluate the combined use of different sensors, MSI (Multispectral Imager onboard 

Sentinel-2A/B) and OLI (Operational Land Imager onboard Landsat-8/9) in our work, to construct 

complete time series throughout the sugarcane growth cycle. This strategy could enhance the temporal 

density of available imagery in regions with frequent cloud cover. Moreover, this study explores the 

following hypothesis: (1) agronomic characteristics of varieties influence classification results because 

they exhibit different spectral patterns along grown cycle; (2) classification accuracy decreases as the 

number of sugarcane varieties increases, owing to spectral similarities among them; (3) the most 

effective classification models require multi-temporal data covering different stages of the crop growth 

cycle; and (4) non-parametric methods are expected to outperform parametric approaches, as they better 

differentiate canopy variations among varieties at the same phenological stage.  

Therefore, to address the research hypotheses, the three specific objectives of this work were: (1) 

to classify sugarcane varieties in Costa Rica from RS data combining MSI and OLI images and crop-

related information, using an additive variety approach (to the initial first group, composed by three 

varieties, a fourth, a fifth and a sixth variety were added, respectively); (2) to compare the performance 

of two non-parametric classifiers (RF and SVM) and a parametric method (DA) for sugarcane variety 

classification, and (3) to validate classification results at the corresponding crop management scale, the 

plot, a less addressed research purpose. 
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2. Materials, data and methods 

2.1. Study area 

This classification of sugarcane varieties was developed in sugarcane plantations owned by the 

CoopeAgri R.L. cooperative. These plantations are located in the General Valley of Costa Rica, a region 

with an average altitude of ~550 m above sea level, an annual rainfall of around 3000 mm, and a mean 

temperature of 25 °C (Solano and Villalobos, 2001). According to Mata et al. (2020) the main soil orders 

are ultisols, oxisols, and their associations. The analysis was conducted using plot information provided 

in a shapefile delivered by the cooperative. The selected plots had the following characteristics: larger 

than 0.2 ha, contained variety information, were between the first and the fifth ratoon, and started the 

phenological cycle in February, March, or April of 2023 (Figure 1). In total, this study included 430 

plots, covering 462.5 ha, with an average plot size of 1.07 ha. 

 

Figure 1. Location of the study area and the sugarcane production areas selected, owned by the 

CoopeAgri R.L.  

2.2. Sugarcane varieties 

The research was conducted from six main varieties cultivated in the CoopeAgri sugarcane 

plantation during 2023-2024 harvest season. The selected varieties were Laica 04-809, Laica 05-805, 

Laica 07-801, RB 86-7515, RB 98-710, and RB 99-381. All of them have a phenological cycle of 12 

months, being the start not determined by the variety itself but by the logistical planning of the mill. The 

most relevant agronomic characteristics, which had implications for the spectral response of sugarcane 

through satellite remote RS, are defined in Table 1. 

Table 1. The main characteristics of selected sugarcane varieties. 

Variety Characteristics 

Laica 04-809 

Semi-erect growth habit; large-sized leaves of medium fineness; regular leaf 

shedding. This variety exhibits regular ratooning, fast growth, and mid-to-late 

maturation. The blooming percentage is approximately 20 %.  
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Laica 05-805 

Erect growth habit; large-sized and tapered leaves; easy leaf shedding. This 

variety exhibits regular ratooning, fast growth, and later maturation. The blooming 

percentage is around 10 %.  

Laica 07-801 

Erect growth habit; medium-sized leaves of short fineness; easy leaf shedding. 

This variety exhibits regular ratooning, fast growth, and mid maturation. The 

blooming percentage is around 25 %. It can be affected by orange rust.  

RB 86-7515 

Erect to semi-erect growth habit; large-sized leaves of medium fineness; regular 

leaf shedding. This variety exhibits fast ratooning and growth, and mid maturation. 

In this region, it has a high blooming percentage, about 100 %.  

RB 98-710 

Erect growth habit; large-sized leaves of short fineness; low leaf shedding. This 

variety exhibits fast ratooning, slow growth, and late maturation. The blooming 

percentage is around 30 %.  

RB 99-381 

Erect growth habit; medium-sized leaves of short fineness; high leaf shedding. 

This variety exhibits fast ratooning, fast growth, and mid-to-late maturation. The 

blooming percentage is low, around 10 %.  

Source: own elaboration based on information from Vignola et al. (2018), LAICA (2023), and personal 

communication from Andrey Chinchilla, agronomic advisor from CoopeAgri. 

2.3. Geospatial data 

2.3.1 Source of geospatial data 

The vector file for the sugarcane varieties was provided by CoopeAgri and consisted of a polygon 

file delineating the boundaries of the plots for the 2023-2024 harvest season. Each plot contained the 

following information: name, area, zone, variety, planting year, and age. Due to the intense presence of 

cloud cover and the need to improve the classification of sugarcane varieties, this work utilized raster 

data from Sentinel-2A/B and Landsat-8/9 platforms, covering the period from January 1, 2023, to 

January 31, 2024 (Figure 2). A total of 43 images were available for Sentinel-2, while 29 images were 

used from Landsat - 8 / 9. Sentinel-2A/B imagery at level 2, processed with the Sen2Cor algorithm 

(Mueller-Wilm et al. 2019), were obtained from the European Space Agency through the Data Space 

Copernicus portal (https://dataspace.copernicus.eu/). These rasters were used at 20×20 m2 of pixel 

resolution. The Landsat-8/9 images at level 2, processed using Landsat Surface Reflectance Code 

(USGS, 2022) were downloaded from Collection 2 of the United States Geological Survey, using the 

Earth Explorer portal (https://earthexplorer.usgs.gov/). These rasters were used at 30×30 m2 of pixel 

resolution. 

 

Figure 2. Available images with more than 40 % of valid pixels within the study area from 

January 2023 to January 2024. 

 

2.3.2  Harmonized Sentinel and Landsat imagery 

Although the level 2 radiometric processing for the MSI and OLI sensors can be considered largely 

equivalent due to the relatively flat terrain, a linear regression model was applied to harmonize the 

spectral bands between both sensors, as done in previous works (Rahman and Robson 2020, Alemán-

Montes et al. 2023, Berra et al. 2024). MSI bands served as dependent variables, while OLI bands were 

used as independent variables, aiming to minimize possible sources of error. The SWIR1 from Sentinel-

http://www.geo-focus.org/
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2 and Landsat-8/9 is centred at 1.61 μm and SWIR2 at 2.19 μm. The harmonization process involved 

randomly selecting only pixels from both sensors that spatially coincided within the images path and 

unaffected by clouds, shadows, and other atmospheric noises, resulting in a total of 548 selected pixels. 

Reflectance values for each band were extracted, and with linear regression models were fitted 

accordingly. To ensure, robust calibration, four images from each sensor were acquired on the same 

dates (February 4, 2023; June 4, 2023; December 21, 2023; and January 30, 2024). In total, reflectance 

data from 2192 pixels were used to calibrate the harmonization model for each band (Figure 3). 

 
Figure 3. Workflow for harmonizing OLI and MSI reflectance based on common grids pixels.  

 

2.3.3 Dataset construction for classification 

The harmonization equations obtained were applied to each corresponding band of the entire 

selected Landsat imagery archive to reduce radiometric differences between the sensors. Following the 

harmonization process, six VIs were calculated using the harmonized Landsat-8/9 bands and the original 

Sentinel-2A/B bands. The selected VIs, the most used in sugarcane research, were: Enhanced Bloom 

Index (EBI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference 

Vegetation Index (NDVI), Simple Ratio (SR), Normalized Difference Infrared Index 1 (NDII1) and 

Normalized Difference Infrared Index 2 (NDII2) (Table 2).  

Table 2. Vegetation indexes (VIs) obtained from the satellite images.  

Vegetation Index Equation Source 

EBI 

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒

𝐺𝑟𝑒𝑒𝑛
𝐵𝑙𝑢𝑒

× (𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒 +  𝜀)
 (Chen et al. 

2019) 

GNDVI 
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑
 

(Gitelson et al. 

1996)  

NDVI 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(Rouse et al. 

1973) 

SR* 
𝑁𝐼𝑅

𝑅𝑒𝑑
 (Jordan, 1969) 

NDII1 
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1
 

(Hardisky et al. 

1983) 

NDII2 
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2
 

(Hardisky et al. 

1983) 

*This has also been defined in the literature as VIN (Vegetation Index Number) or RVI (Ratio Vegetation 

Index). ε is an adjusting constant to ensure the non-negative denominator; in this work was set to 1 because the 

reflectance data was ranging from 0 to 1. 
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Although a cloud mask was applied to each band using the Scene Classification Layer for Sentinel-

2 and the Pixel Quality Assessment for Landsat-8/9, some problematic pixels were detected yet (due to 

haze, undetected clouds, or unnoticed shadows). To address this issue, a visual inspection was performed 

on all plots to identify data affected by interferences, which were subsequently removed. Additionally, 

to mitigate the boundary effects (presence of trees and their shadows, and roads very near to the plots), 

an erosion tool of 10-meters for all polygons was applied using RStudio, ensuring that remained data 

stayed unaffected by external anomalies (Serra et al. 2003). The 10-meters applied erosion preserved 

the shape of the polygons while removing external noise considering that satellite data had pixel sizes 

of 20×20 m2 and 30×30 m2. This choice balances the need to ensure result quality with minimal loss of 

usable crop area. 

Subsequently, a dataset was built joining variety information, and values of all the reflectance bands 

and VIs for all the available dates. Afterwards, a new point vector file was created from each Sentinel-

2 pixel (20×20 m2), linking each point to its corresponding information. Later, using the raster, terra, 

and sf packages in RStudio, spectral bands and VI values were extracted and integrated with variety 

information to generate the final dataset for classification. Exceptionally, spectral bands and VIs were 

available for 72 dates per point because information was missing on some of them due to atmospheric 

conditions. To address this problem and create a dataset with the largest number of values, spectral and 

VI data were aggregated by month, calculating the median for all available dates within each month. 

This process was applied to all points, being removed those with missing data. Finally, a dataset of 6505 

points from a total of 10983 was obtained. Due to differences in sample sizes among varieties, 500 

random points per variety were selected for classifying. The final dataset was then randomly split, with 

80 % used for training and 20 % for validation, considering these percentages as used in other remote 

sensing studies (Kai et al. 2022, Schulthess et al. 2023). The 3505 points not used were included in a 

second validation process at plot scale, which is explained in the following section. 

2.4. Classifications methods and validation 

This study evaluated the three most common sugarcane classifiers —Random Forest (RF), Support 

Vector Machine (SVM), and Discriminant Analysis (DA)— using an additive approach for varieties 

discrimination using RS data (Fortes and Demattê 2006, Everingham et al. 2007, Duft et al. 2019, Kai 

et al. 2022). The classification process was conducted across four variety classification groups, being 

each group of varieties selected according to the most successful combination: (1) initially, three 

sugarcane varieties (Laica 05-805, RB 86-7515, and RB 98-170) were analysed because they gave the 

best results; (2) in the second stage, the variety RB 99-381 was then added to the classification because 

it yielded the best results; (3) in the third stage, the variety Laica 07-801 was incorporated for the same 

reason; and (4) finally, the variety Laica 04-809 was included, completing the full classification group. 

The main characteristics of each method are defined as follow. 

Random forest is a non-parametric method of classification and regression that ensembles 

estimates’ trees from explanatory variables with the aim to finding a prediction function f(x) for 

forecasting Y. The result obtained combines the solutions of multiples decision trees to produce a unique 

result (Breiman 2001). Each tree is trained using a random sample of data using a random subset of 

predictor variables (Cutler et al. 2012). The RF classification algorithm was applied in RStudio using 

the “randomForest” package (Breiman et al. 2024). The hyperparameters that control the structure of 

each tree (and the forests) were adjusted using the optimal mtry (number of candidate variables 

considered at each split) and ntree (number of trees in the forest), and the best threshold for the 

MeanDecreaseGini (importance of variable) was defined. The last adjustment considered the minimum 

number of variables that allowed better classification with low correlation.  

Support vector machine is a non-parametric method used for classification and regression 

(Sheykhmousa et al. 2020). The algorithm objective is to maximize the space between classes from the 

construction of an optimal hyperplane (limit of decision among categories) that separates the space in a 

discrete number or classes (Suykens and Vandewalle 1999, Mountrakis et al. 2011). The best 

hyperparameters for this method were obtained through a grid search to find the optimal values for cost 

(C) and gamma (γ), using the combinations (0.1, 1, 10) for cost and (0.01, 0.1, 1) for gamma (γ), the 

grid search method has been used in other study with RS data (Saini and Ghosh 2018, Wang et al. 
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2020). The optimization was performed using the tune() function from the e1071 package in RStudio, 

which evaluated the performance of the hyperparameter combinations through cross-validation. Finally, 

the optimal values for cost and gamma were used to train the model using the Radial Basis Function 

kernel. This method was selected due to its ability to model complex nonlinear relationships in RS data 

(Razaque et al. 2021). 

Discriminant analysis is a statistical method that generates discriminant functions based on linear 

contributions from predictor variables, allowing for the identification of which variables play a more 

significant role in classification. These functions maximize the statistical differences between 

predefined groups while also reducing the statistical dimensionality. One advantage is that the 

coefficients provide significant information applicable to other available data. However, the method 

assumes that the data follow a normal distribution to produce reliable results, and its performance 

decreases when dealing with a high number of predictor variables (Apan et al. 2004, Galvão et al. 2005, 

Ramayah et al. 2010, Moré et al. 2011). The selection of explanatory variables was initially done using 

the Bayesian Model Averaging, which allows for the identification of the most suitable variables to 

classify different groups using a probabilistic assessment of each variable contribution. This method 

was also applied from RStudio using the “BMA” package (Raftery et al. 2025). 

To validate the results for each classification method and variety classification group, the following 

metrics were calculated: Kappa index (KI), Overall accuracy (OA), Producer accuracy (PA), and User 

accuracy (UA), which have been widely used to evaluate classification in RS approaches (Liu et al. 

2007, Rwanga and Ndambuki 2017). Once the best classification model by variety group was obtained, 

it was applied to the raster data (at 20×20 m2) that included all the study area, 6505 pixels (3000+3505), 

allowing for an assessment of spatial variability at the plot scale. Using the modal value from raster data 

inside each plot, the predominant variety was determined with QGIS. These results were then compared 

with the reference variety, and accuracy metrics were calculated at plot scale with error matrices. 

 

3. Results  

3.1. Harmonization of images 

The harmonization process between the bands of the MSI and OLI sensors showed enough 

adjustment. The coefficients of determination (R² with p-value < 0.05) ranged from 0.91 (Red and NIR 

bands) to 0.78 (Blue band), while the root mean square error (RMSE) varied between 0.02 (Green band) 

and 0.03 (Blue band) (Figure 4). These results confirm the suitability of the approach. After developing 

this local harmonization, it was possible to adjust the bands of OLI sensor, reducing the amount of 

missing data and enabling a more robust time series. 

3.2. Understanding the temporal dynamics of sugarcane varieties 

The temporal dynamics of bands and selected VIs facilitates a deeper understanding of the growth 

cycle patterns for each variety. Certain varieties showed distinct differences when analysed through the 

patterns of bands and VIs. For the varieties’ classification, the bands that exhibited the most notable 

differences among varieties were Blue, Green, NIR, and SWIR1, becoming apparent after May (Figure 

5A-B-D-E). A noteworthy pattern was observed in the varieties Laica 04-809, Laica 07-801, and 

RB 99 - 381, which displayed similar patterns across almost all bands. The variety RB 98-710 had the 

highest reflectance after May in the Blue and NIR bands (Figure 5B-D). The Red and SWIR1 bands 

showed the grouping of the varieties into two groups after October: one group consisting of 

Laica 05 - 805, RB 86-7515, and RB 98-710, and the other group consisting of Laica 04-809, 

Laica 07 - 801, and RB 99-381 (Figure 5C-E-F). 
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Figure 4. Regressions to harmonize OLI bands with MSI bands from coincident pixels selection. 

Blue (A), Green (B), Red (C), NIR (D), SWIR1 (E), and SWIR2 (F). 

 

 
Figure 5. Temporal dynamics of six sugarcane varieties using the reflectance in different 

spectral bands. Blue (A), Green (B), Red (C), NIR (D), SWIR1 (E), and SWIR2 (F).  

 

The patterns of the sugarcane growth cycle by variety also showed differences when they were 

analysed by VIs. For instance, EBI initially displayed a decreasing trend until approximately July-

August. After that, the varieties Laica 05-805, RB 86-7515, and RB 98-710 showed the most variability 

compared to the other three varieties (Figure 6A). The other VIs began with an increasing trend, reaching 

a maximum in July-August. The GNDVI showed the greatest difference between varieties after August, 

with Laica 05-805 having the lowest values (Figure 6B). This behaviour was also observed in NDVI, 

SR, NDII1, and NDII2 (Figure 6C-F). The Laica 04-809 experienced the smallest increase in June 

compared to the other varieties, which was reflected in the GNDVI and NDVI (Figure 6B-C). The SR 
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showed significant differences between the varieties, with RB 98-710 having the highest values almost 

every month, while Laica 05-805 had the lowest (Figure 6D). This pattern was also observed in NDII1 

and NDII2, but with smaller differences between varieties (Figure 6E-F). 

 
Figure 6. Temporal evolution of six sugarcane varieties using different vegetation indices. EBI 

(A), GNDVI (B), NDVI (C), SR (D), NDII1 (E), and NDII2 (F).  

 

3.3. Sugarcane variety classification and validation results 

The first group included Laica 05-805, RB 86-7515, and RB 98-710 varieties. The predictor 

variables selected from the optimal threshold of the MeanDecreaseGini of RF, using the best mtry (8) 

and ntree (900), were the Green and NIR bands of July, NDII1 of September, NDII2 of December, and 

EBI of January. KI and OA were 0.87 and 0.91, respectively. For the SVM, using the same explanatory 

variables and adjusting the best hyperparameters for cost (1) and gamma (1), the KI and OA were 0.90 

and 0.94, respectively. The final method used was DA, which showed a KI of 0.79 and an OA of 0.86 

(Table 3). The selection of the most relevant variables for DA was conducted using both Bayesian Model 

Averaging and the MeanDecreaseGini method. In almost all cases, including the following three variety 

classification groups, the selection using MeanDecreaseGini showed the best results (Appendix 2).  

The second group involved the three previous varieties plus RB 99-381. The predictor variables 

selected, using the optimal MeanDecreaseGini threshold from the best mtry (7) and ntree (700), were 

the Green band of July, NIR band of September, SWIR1 band of December, SR of January, NDII1 of 

October, and EBI of November. The KI and OA were 0.81 and 0.86, respectively. The SVM, also using 

the same explanatory variables and adjusting the hyperparameters cost (1) and gamma (1), had a KI of 

0.83 and an OA of 0.87. Finally, DA showed the lowest values for KI (0.70) and OA (0.77) (Table 3). 

The third group of varieties included the addition of Laica 07-801. The best predictor variables 

selected using the same criteria were Age, the Green bands of July and November, the NIR band of 

January, and the VIs NDII2 of September and NDVI of December. The optimal values for mtry and 

ntree were 3 and 900, respectively. RF showed the best results in KI and OA, with values of 0.85 and 

0.88, respectively. With SVM, adjusting the hyperparameters cost (10) and gamma (1), the KI and OA 

were 0.83 and 0.87, respectively. Finally, DA showed the lowest values for all indicators, with KI and 

OA values of 0.56 and 0.64, respectively (Table 3). 

The fourth group included all the evaluated varieties. The best predictor variables selected were 

Age, the SR of June, NIR band of August, Blue band of September, SWIR1 and EBI of November, and 

Green band of December, using an mtry of 8 and ntree of 1000. For RF, the KI and OA were 0.81 and 

0.84, respectively. The SVM, using the hyperparameters cost (10) and gamma (1), showed the highest 

values for KI and OA, 0.86 and 0.88, respectively. In DA, the KI and OA were the lowest values, 0.51 
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and 0.59, respectively (Table 3). Finally, table 4 shows the confusion matrix of SVM selected as a best 

model in the fourth group with six varieties. 

Table 3. Validation results of sugarcane varieties classification using Random Forest (RF), 

Support Vector Machine (SVM), and Discriminant Analysis (DA).  

 
Table 4. Confusion matrix of the best model (SVM) for six varieties by pixels. 

    Reference data 
User 

accuracy 
  

  
Laica 

05-805 

RB 86-

7515 

RB 98-

710 

RB 99-

381 

Laica 07-

801 

Laica 04-

809 

Total 

pixels 

C
la

ss
if

ie
d
 d

at
a 

Laica 05- 

805 
92 5 5 0 1 0 103 0.89 

RB 86- 

7515 
3 92 2 0 1 2 100 0.92 

RB 98- 

710 
1 1 88 10 4 0 104 0.85 

RB 99- 

381 
1 2 3 82 2 1 91 0.90 

Laica 07- 

801 
1 0 0 5 89 11 106 0.84 

Laica 04- 

809 
2 0 2 3 3 86 96 0.90 

Total 

pixels 
100 100 100 100 100 100 600  

Producer 

accuracy 
0.92 0.92 0.88 0.82 0.89 0.86 

  

Overall 

Accuracy 

0.88 

 

 Kappa index Overall accuracy User accuracy Producer accuracy 

Varieties RF SVM DA RF SVM DA RF SVM DA RF SVM DA 

Laica 05-805 

0.87 0.90 0.79 0.91 0.94 0.86 

0.90 0.92 0.81 0.90 0.93 0.80 

RB 86-7515 0.95 0.98 0.88 0.90 0.94 0.98 

RB 98-710 0.90 0.91 0.89 0.94 0.94 0.82 

Laica 05-805 

0.81 0.83 0.70 0.86 0.87 0.77 

0.79 0.82 0.68 0.87 0.87 0.68 

RB 86-7515 0.94 0.93 0.72 0.90 0.89 0.91 

RB 98-710 0.89 0.89 0.84 0.79 0.82 0.76 

RB 99-381 0.84 0.85 0.84 0.88 0.90 0.74 

Laica 05-805 

0.85 0.83 0.56 0.88 0.87 0.64 

0.82 0.83 0.47 0.88 0.87 0.48 

RB 86-7515 0.94 0.91 0.70 0.88 0.87 0.81 

RB 98-710 0.88 0.86 0.84 0.93 0.92 0.76 

RB 99-381 0.84 0.85 0.37 0.83 0.83 0.40 

Laica 07-801 0.92 0.90 0.84 0.87 0.85 0.74 

Laica 05-805 

0.81 0.86 0.51 0.84 0.88 0.59 

0.82 0.89 0.40 0.88 0.92 0.58 

RB 86-7515 0.88 0.92 0.77 0.86 0.92 0.71 

RB 98-710 0.85 0.85 0.78 0.81 0.88 0.71 

RB 99-381 0.80 0.90 0.71 0.84 0.82 0.59 

Laica 07-801 0.88 0.84 0.65 0.80 0.89 0.54 

Laica 04-809 0.85 0.90 0.25 0.88 0.86 0.33 
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3.4. Spatial validation by plots 

Once determining the predominant variety (modal value) inside each plot, obtained from the best 

classification method for each variety group, the results were compared with the reference variety, and 

the accuracy metrics were calculated. The variety classification group with three varieties had a KI of 

0.86 and an OA of 0.92. In the second variety classification group, the KI was also 0.86, and the OA 

was 0.90 (Table 5). The variety classification group for five varieties also showed satisfactory results, 

being the KI of 0.93 and the OA of 0.94, while the classification with six varieties also presented good 

adjustments: KI was 0.90 and OA was 0.92. 

 

Table 5. Validation results of sugarcane varieties classification at plot scale using the best 

method for each variety classification groups. 

 

These results are also supported by the spatial variability of each variety. Figure 7 shows examples 

of the spatial variability of classified varieties in four different farms, using the best classification model 

for the six-variety classification group. As previously defined, each farm is divided into plots (polygons 

with black boundaries), and these are cultivated with the same sugarcane variety. Most of the plots have 

not pixels with different varieties (variety noise), which confirms the satisfactory model adjustment. In 

most cases, it was observed that variety-induced noise was primarily located at plot edges and was 

subsequently minimized through the previously described erosion procedure. 

Varieties Kappa index Overall accuracy Plots User accuracy Producer accuracy 

Laica 05-805 

0.86 0.92 

32 0.94 0.79 

RB 86-7515 39 0.90 0.92 

RB 98-710 108 0.93 0.97 

Laica 05-805 

0.86 0.90 

32 0.94 0.79 

RB 86-7515 39 0.95 0.84 

RB 98-710 108 0.87 0.98 

RB 99-381 61 0.90 0.89 

Laica 05-805 

0.93 0.94 

32 1.00 0.89 

RB 86-7515 39 0.97 0.88 

RB 98-710 108 0.94 0.97 

RB 99-381 61 0.93 0.92 

Laica 07-801 135 0.93 0.97 

Laica 05-805 

0.90 0.92 

32 0.97 0.91 

RB 86-7515 39 1.00 0.90 

RB 98-710 108 0.92 0.97 

RB 99-381 61 0.90 0.86 

Laica 07-801 135 0.91 0.94 

Laica 04-809 48 0.92 0.90 
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Figure 7. Spatial variability of sugarcane varieties classified in CoopeAgri, around the following 

farms: Peje, Peje Weber, and Peje Nuevo (A), Volcán (B), Porvenir (C), and Guayacan (D). 

 

4. Discussion  

Harmonization of different satellite imagery represents an effective strategy for improving RS time 

series, as it enables gap-filling and enhances available information, particularly in regions with high 

cloudiness. In our study area, the period from August to November exhibited the highest cloud-related 

noise (Figure 2). MSI and OLI have advantages for harmonization due to their similarities in spectral 

bands and angular characteristics (Mandanici & Bitelli 2016, Claverie et al. 2018). Although our 

harmonization results were, in general, better than those obtained by Berra et al. (2024), in both cases 

the blue band showed the lowest R2, which can be attributed to the greater sensitivity of blue 

wavelengths to atmospheric effects as aerosol absorption. Besides, the approach of aggregating the 

spectral information and VIs by month allows for a robust time series for each sugarcane variety. 

The reflectance of each band and VIs throughout the growth cycle allowed us to understand and 

confirm that the temporal and spectral patterns for each variety can differ due to physiological and 

morphological characteristics (Fortes and Demattê 2006). This fact is clearly visible in the case of 

RB 98 - 710 variety, which showed the highest differences with the other varieties in the Green and NIR 

bands, as well as NDVI, SR and NDII2 (Figures 5 and 6). The reason of this clear difference can be 

attributed to its agronomic characteristics, because this variety has erected growth with large-size leaves 

and fast ratooning (Table 1). The RB 86-7515 variety showed the second highest differences in the NIR 

band and in the same VIs before August-September, after which it displayed a clear decrease until 

January. This pattern is related to the high blooming on this variety, which is also indicated by the 

increase in the EBI VI. The Laica 05-805 and Laica 07-801 varieties alternated as the third variety with 

higher greenness based on NDVI and SR VIs. Both have an erected growth habit, with the important 

difference that Laica 05-805 decreases more sharply towards the end of the harvest cycle, as shown in 

the NIR band, which can be related to its mid-maturation (Figures 5 and 6). The Laica 04-809 variety 
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had the lowest reflectance, as seen in NIR band and NDVI, SR, NDII1, and NDII2. This pattern was most 

evident before July-August, possibly due to its semi-erect growth habit and the large-size leaves with 

medium fineness. Finally, RB 99-381 variety showed the highest similarities with the other varieties.  

The non-parametric methods were the best classifiers, with SVM being the top performer in all 

three groups and RF in one. In other studies regarding sugarcane variety classification, SVM has also 

been the method that shows the best results (Everingham et al. 2007, Kai et al. 2022). Although SVM 

and RF are comparable in most results, the SVM ability to generalize complex characteristics could be 

the reason to better outcomes (Mountrakis et al. 2011). According to Galvão et al. (2005), OA has a 

general decrease trend when the number of varieties increase because the complexity of discrimination, 

due to less differences among varieties, also growths. Nevertheless, in our case this trend was not so 

clear, because some slight differences were obtained: 0.94, 0.87, 0.88, and 0.88 for the groups with 

three, four, five, and six varieties, respectively, at pixel scale, and 0.92, 0.90, 0.94, and 0.92, 

respectively, at plot scale. 

In our modelling, Green and NIR bands were the most common predictor variables, appearing in 

all the best models, while SWIR bands were important for two best models (Appendix 3). The Red band 

was not selected as an explanatory variable in any model. The importance of Green, NIR and SWIR 

bands in classifying sugarcane varieties was also found by Galvão et al. (2005), Fortes and Demattê 

(2006), Murillo-Sandoval et al. (2011), Duft et al. (2019), Kai et al. (2022). The Blue single band was 

only important in one model. Regarding the VIs, the most common were EBI and NDII1, both significant 

in three models, followed by SR, which was present in two models, while NDVI and NDII2 just were 

presents in only one model. In some previous studies, spectral bands were the primary explanatory 

variables; however, our results highlight the importance of VIs as well, marking a relevant difference 

from some prior research. Additionally, Age emerged as a relevant variable, particularly in classification 

groups three and four, where an increasing number of varieties made its discriminative power more 

evident. 

According to our results, the most relevant month was December (around nine months of sugarcane 

development), four times selected, followed by September, November, and January (around six, eight, 

and ten months of development, respectively), each three times selected; therefore, they were in 

advanced growth cycle stages. These findings differ from those obtained by Murillo-Sandoval et al. 

(2011) because they concluded that the only period for obtaining a clear discrimination of varieties was 

between 4th and 5th months of growth development.  

The OA at the pixel scale was lower than at the plot scale for the groups with four, five, and six 

varieties, while in the groups with three varieties, the behaviour was the opposite. The best OA at the 

pixel scale was 0.94, 0.87, 0.88, and 0.88 for the groups with three, four, five, and six varieties, 

respectively. At the plot scale, the OA of the selected models was 0.92, 0.90, 0.94, and 0.92, respectively. 

Our results are better than those obtained by Apan et al. (2004), Galvão et al. (2005), Murillo-Sandoval 

et al. (2011), and Duft et al. (2019). However, our results were lower than those obtained by Fortes and 

Demattê (2006) who evaluated the classification of five sugarcane varieties, one of which was easy to 

classify just using a threshold in the NIR band. Another case with better results was Kai et al. (2022) 

who evaluated the classification of four sugarcane varieties using non-parametric methods. The main 

difference with our work is that in their evaluated varieties, the growth cycle started at different times, 

an advantage for improving classification, while in our study, the growth cycle of all varieties started at 

the same time (from January to April), decreasing their separability. 

 

5. Conclusions 

This work contributes to improve the sugarcane varieties classification using a harmonization of 

Sentinel and Landsat images, an additive variety approach (with four groups for six varieties), and a 

combination of parametric and non-parametric methods at pixel and plot scale, with an OA higher than 

90 %. 
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In cloudy regions, the harmonization process of different satellite imagery is a rewarding technique 

that enhances RS time series. In this work, a complete Sentinel/Landsat time series aggregated by 

months was essential to understand the sugarcane growth cycle by varieties. Each variety has different 

physiological and morphological characteristics that can be identified from spectral information, such 

as the bloom phenomenon in RB 86-7515.  

In our study, the non-parametric methods provided the best results, with SVM performing better in 

three groups (with an OA from 0.87 to 0.94) and RF in one case (0.88). The Green and NIR bands, along 

with the EBI, were more suitable for identifying differences among varieties. Regarding temporal 

information, September, November, and December contributed to the best selected models, 

corresponding to advanced growth cycle stages. The validation results were successful at both pixel and 

plot scales but the latter being much better in almost all cases. Plot scale validation is a valuable approach 

because agronomic management practices are carried out at this scale, becoming more relevant in crop 

management. 

Our future work will be to evaluate the inclusion of other satellite sensors, such as Synthetic 

Aperture Radar, and other bands, for instance, the Red Edge. The second objective will be the evaluation 

of other non-parametric methods, for example, k-Nearest Neighbours (kNN) or Artificial Neural 

Networks (ANN) as applied by Kai et al. (2022) among others. The last aim will be to apply these 

models to years or farms not included in the current analysis. 
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Appendix 1. Literature review of sugarcane variety classifications from remote sensing. 

Reference Evaluated varieties Method RS source Used variables OA 

Apan et al. (2004) 

8 (Q121, Q124, Q136, 

Q138, Q185, Q190, Q195, 

and Q20) 

Discriminant analysis. EO-1 Hyperion 152 bands and 40 vegetation indices. 74.0 % 

Galvao et al. (2005) 

5 (RB72-454, SP80-1816, 

SP80-1842, SP81-3250, 

and SP87-365) 

Discriminant analysis. EO-1 Hyperion 

146 bands (10 to 57, 79 to 115, 135 to 163, and 185 to 

224). All ratios of reflectance between the selected 

bands. 13 vegetation indices. 

87.5 % 

Fortes and Demattê 

(2006) 

4 (RB835486, RB855536, 

RB855113, and SP81-

3250) 

Analysis of individual 

bands, pixel 

dispersion plots, and 

discriminating 

equations. 

Landsat-7 
6 bands (B1, B2, B3, B4, B5, and B7). 6 vegetation 

indices (NDVI, GVI, SAVI, RVI, RATIO, and GNDVI) 
93.6 % 

Everingham et al. 

(2007) 

9 (20, 121, 124, 135, 136, 

138, 159, 185, and 190) 

Discriminant analysis, 

Support Vector 

Machine, and 

Random Forest. 

EO-1 Hyperion 150 bands 85.0 % 

Murillo-Sandoval et 

al. (2011) 
2 (CC85-92 and CC84-75) Jeffries-Matusita. Landsat-7 

6 bands (B1, B2, B3, B4, B5, and B7). 6 vegetation 

indices (RVI, NDVI, GNDVI, SAVI, ARVI, GVI). 2 

principal components. 

80.8 % 

Duft et al. (2019) 25 Random Forest. Sentinel-2 
10 bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12). 

3 vegetation indices (NDBI, RENDWI and RENDVI) 
86.0 % 

Kai et al. (2022) 
4 (RB867515, RB92579, 

RB966928, and 

RB988082) 

k-Nearest Neigh- 

bours algorithm, 

Support Vector 

Machine, Random 

Forest, and Artificial 

Neural Network. 

Sentinel-2 

12 bands (B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, 

B11, B12). 10 vegetation indices (NDVI, GNDVI, 

NDWI, NDCI, NDMI, EVI, NDRE, SAVI, SIPI, and 

CI). 10 bands combination. 

99.5 % 
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 Appendix 2. Results of variable selection using MeanDecreaseGini and Bayesian Model Averaging methods for sugarcane variety 

classification with Discriminant Analysis. 

Varieties  Selection method  Selected variables Kappa index Overall accuracy  User accuracy  Producer accuracy 

Laica 05-805 

MeanDecreaseGini 

The bands Green (July) and NIR (July). 

The VIs NDII1 (September), NDII2 

(December), and EBI (January).  

0.79 0.86 

0.81 0.8 

RB 86-7515 0.88 0.98 

RB 98-710 0.89 0.82 

Laica 05-805 

Bayesian Model 

Averaging 

Age and Sector. The bands Blue 

(November), Green (July), SWIR1 (April 

and January), and SWIR2 (October). The 

VIs GNDVI (October), EBI (August and 

June), and NDII2 (May).  

0.70 0.80 

0.76 0.73 

RB 86-7515 0.79 0.87 

RB 98-710 0.86 0.81 

Laica 05-805 

MeanDecreaseGini 

The bands Green (July), NIR 

(September), and SWIR1 (December). The 

VIs NDII1 (October), EBI (November), 

and SR (January).  

0.70 0.77 

0.68 0.68 

RB 86-7515 0.72 0.91 

RB 98-710 0.84 0.76 

RB 99-381 0.84 0.74 

Laica 05-805 

Bayesian Model 

Averaging 

Age. The bands Blue (May), SWIR1 

(April and January), and SWIR2 (January). 

The VIs NDVI (June), EBI (July), and 

NDII1 (October).  

0.64 0.73 

0.73 0.72 

RB 86-7515 0.73 0.76 

RB 98-710 0.81 0.72 

RB 99-381 0.65 0.73 

Laica 05-805 

MeanDecreaseGini 

Age. The bands Green (July and 

November) and NIR (January). The VIs 

NDII2 (September) and NDVI (December).  

0.56 0.64 

0.47 0.48 

RB 86-7515 0.84 0.74 

RB 98-710 0.7 0.81 

RB 99-381 0.84 0.76 

Laica 07-801 0.37 0.4 

Laica 05-805 

Bayesian Model 

Averaging 

Age and Sector. The bands Blue 

(December), Red (September), SWIR1 

(October), and SWIR2 (August and 

January). The VIs GNDVI (May), NDVI 

(June), SR (April, July, and November), 

and NDII2 (September). 

0.62 0.70 

0.57 0.69 

RB 86-7515 0.76 0.76 

RB 98-710 0.72 0.82 

RB 99-381 0.77 0.68 

Laica 07-801 0.69 0.59 
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Laica 05-805 

MeanDecreaseGini 

Age. The bands NIR (August), Blue 

(September), SWIR1 (November), and 

Green (December). The VIs SR (June) and 

EBI (November). 

0.51 0.59 

0.40 0.58 

RB 86-7515 0.77 0.71 

RB 98-710 0.78 0.71 

RB 99-381 0.71 0.59 

Laica 07-801 0.65 0.54 

Laica 04-809 0.25 0.33 

Laica 05-805 

Bayesian Model 

Averaging 

Age and Sector. The bands Blue (June), 

Green (December), SWIR1 (April and 

January), and SWIR2 (August). The VIs 

GNDVI (June), NDVI (October and 

December), EBI (September and October), 

NDII1 (August), and NDII2 (May).  

0.55 0.63 

0.36 0.5 

RB 86-7515 0.65 0.71 

RB 98-710 0.5 0.52 

RB 99-381 0.69 0.84 

Laica 07-801 0.84 0.76 

Laica 04-809 0.71 0.45 
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Appendix 3. Summary of the best variables for variety classification groups. 

Variety 

groups 
Age 

Blue 

Sep 

Green 

Jul 

Green 

Nov 

Green 

Dec 

NIR     

Jul 

NIR 

Aug 

NIR 

Sept 

NIR 

Jan 

SWIR1 

Nov 

SWIR1 

Dec 

 EBI 

Nov 

EBI 

Jan 

NDVI 

Dec 

SR 

Jun 

SR 

Jan 

NDII1 

Sep 

NDII1 

Oct 

NDII2 

Dec 

Laica 05-805 

    X     X             X       X   X RB 86-7515 

RB 98-710 

Laica 05-805 

    X         X     X X       X   X   
RB 86-7515 

RB 98-710 

RB 99-381  

Laica 05-805 

X   X X         X         X     X     

RB 86-7515 

RB 98-710 

RB 99-381  

Laica 07-801  

Laica 05-805 

X X     X   X     X   X     X         

RB 86-7515 

RB 98-710 

RB 99-381  

Laica 07-801  

Laica 04-809 

 

 


