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RESUMEN

La clasificacion bioclimatica es esencial para entender y manejar el territorio de manera mas
sostenible, asi como en la gestion de la conservacion de la biodiversidad y la evaluacion del cambio
climatico. El método de clasificacion supervisado de Maxima Verosimilitud (ML), es una herramienta
poderosa para la clasificacion bioclimatica. Por ello, se aplico el Clasificador ML en la cuenca del Rio
Caroni, se utilizaron datos de fuentes globales, de los que se extrajo promedios de las variables
climaticas. Para mejorar la resolucion espacial del producto se utilizd la Regresion Ponderada
Geografica (GWR) y el MDE SRTM de 90 m. Ademas, el marco de entrenamiento estuvo fundamentado
en la distribucion de los diferentes ecosistemas previamente clasificados segin Holdridge. A partir de
esta metodologia se logro una precision general del 93 % donde las clases de bosque pluvial premontano,
bosque muy humedo tropical y bosque htimedo pre montano denotaron el peor desempefo, pues existen
de por medio estructuras transitivas que el modelo de clasificacion no pudo captar.

Palabras clave: Clasificacion de Maxima Verosimilitud, clasificacién bioclimatica, Regresion Ponderada
Geografica.

BIOCLIMATIC CLASSIFICATION IN THE CARONI RIVER BASIN USING THE MAXIMUM
LIKELIHOOD METHOD

ABSTRACT

Bioclimatic classification is essential for understanding and managing the territory in a more
sustainable way, as well as in biodiversity conservation management and climate change assessment.
The supervised Maximum Likelihood (ML) classification method is a powerful tool for bioclimatic
classification. Therefore, the ML classifier was applied in the Caroni River basin, using data from global
sources, from which averages of climatic variables were extracted. Geographic Weighted Regression
(GWR) and the 90 m SRTM DEM were used to improve the scale. The Holdridge classification was
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applied, this presented an overall accuracy of 93 % the classes of premontane rainforest, very humid
tropical forest and premontane rainforest denoted the worst performance, as there are transitive
structures involved that the classification model could not capture.

Key words: Maximum Likelihood Classification, bioclimatic classification, Geographic Weighted
Regression.

1. Introduccion

La cuenca del rio Caroni, ubicada en la region de la Guayana venezolana, es un territorio de vital
importancia tanto para Venezuela como para la region. Su vasta extension y sus caracteristicas
hidrograficas unicas la convierten en un elemento clave para el desarrollo socioeconémico y ambiental
del pais. Esta cuenca es fundamental para la generacion de energia hidroeléctrica, ya que alberga
importantes represas como Guri, Caruachi y Macagua, que suministran un alto porcentaje de la
electricidad consumida en Venezuela (Sanchez, Rosales & Vessuri 2016) y que segun el informe sobre
la Situacion de los Recursos Hidricos en Venezuela de 2013 (Martinez et al. 2013) representaba el 70 %
de la energia hidroeléctrica del pais en dicha cuenca para el 2006, al tanto que fuentes mas actuales
sitian la generacion eléctrica general por medio de fuentes renovables para 2023 en un 78,38 %
(Datosmacro.com 2025). Ademas, la cuenca del Caroni es un ecosistema de gran valor biologico, hogar
de una diversidad de especies de flora y fauna, muchas de ellas endémicas y unicas en el mundo (Huber
2001). Asimismo, esta region juega un papel crucial en la regulacion del ciclo hidrologico y en la
provision de servicios ecosistémicos esenciales, como la captura de carbono y la conservacion de la
biodiversidad (PNUD 2010). Sin embargo, la cuenca del Caroni también enfrenta desafios, como la
deforestacion, la mineria ilegal y el cambio climatico, que amenazan su integridad ecologica y la
sostenibilidad de sus recursos naturales (SOS Orinoco 2021).

Por otro lado, la clasificacion bioclimatica se presenta como una herramienta esencial para
comprender y gestionar el territorio de manera sostenible, ofreciendo un marco de referencia crucial
para la toma de decisiones en diversos ambitos. Esta disciplina, que integra el analisis del clima y sus
interacciones con los seres vivos, permite delimitar zonas con caracteristicas ambientales homogéneas,
facilitando la identificacion de ecosistemas y la evaluacion de su vulnerabilidad ante el cambio climatico
(Rivas-Martinez et al. 2011). Ademas, la clasificacion bioclimatica resulta fundamental para la
planificacion del uso del suelo, la gestion de recursos naturales y la conservacion de la biodiversidad,
ya que proporciona informacion valiosa sobre la distribucion de especies y comunidades vegetales, asi
como sobre su adaptacion a las condiciones climaticas locales (Walter & Breckle 2002).

La clasificacion bioclimatica, al zonificar el territorio en funcion de sus caracteristicas climaticas
y su relacion con la biota, se revela como recurso esencial para comprender y anticipar los impactos del
cambio climatico en los ecosistemas (Thuiller et al. 2005). Al analizar la distribucion de especies y
comunidades vegetales en relacion con variables climaticas como la temperatura y la precipitacion, se
pueden establecer modelos predictivos que permitan evaluar la vulnerabilidad de los ecosistemas ante
escenarios futuros de cambio climatico (Guisan & Zimmermann 2000). Estos modelos, basados en la
clasificacion bioclimatica, son esenciales para identificar areas de mayor riesgo y disefiar estrategias de
conservacion y gestion adaptativa que minimicen los efectos negativos del cambio climatico en la
biodiversidad y los servicios ecosistémicos (Aratjo ef al. 2005). En este contexto, estudios realizados
en Venezuela y zonas cercanas de Sudamérica han destacado la importancia de la clasificacion
bioclimatica para comprender la distribucion de la biodiversidad y los impactos del cambio climatico
en esta region Neotropical. Por ejemplo, Huber (1997) realizé una clasificacion biogeografica de la
Guayana Venezolana, tomando en cuenta factores climaticos y floristicos, mientras que Ramia (2000)
describio los diferentes tipos de vegetacion presentes en el pais, incluyendo informacion sobre su clima
y distribucion geografica. Asimismo, Josse et al. (2009) presentaron una clasificacion de los ecosistemas
de los Andes, incluyendo zonas de Colombia, Ecuador y Pert, basada en factores climaticos,
altitudinales y de vegetacion. Estos y otros estudios resaltan la necesidad de seguir investigando y
aplicando la clasificacion bioclimatica en la region para promover una gestion sostenible del territorio
y la conservacion de la biodiversidad.
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Ademas, la clasificacion bioclimatica proporciona informacion valiosa para la planificacion del
uso del suelo y la gestion de recursos naturales en un contexto de cambio climatico. Al conocer la
distribucién de los bioclimas y su relacion con la vegetacion y la fauna, se pueden establecer criterios
para la zonificacion del territorio que tengan en cuenta la vulnerabilidad de los ecosistemas y la
necesidad de mantener la conectividad entre ellos para facilitar la migracion de especies y la adaptacion
a nuevas condiciones climaticas (Walter & Breckle 2002). En definitiva, ante el panorama del cambio
global, la clasificacion bioclimatica se consolida como una herramienta esencial en la toma de
decisiones, ya que permite integrar el conocimiento sobre el clima y la biota para promover una gestion
sostenible del territorio y la conservacion de la biodiversidad.

Al analizar la distribucion de especies en funcion de variables climaticas es posible modelar su
respuesta a escenarios futuros de cambio climatico y anticipar posibles cambios en la composicion y
estructura de las comunidades (Guisan & Zimmermann, 2000). Asimismo, la clasificacion bioclimatica
juega un papel crucial en la identificacion de areas prioritarias para la conservacion, ya que permite
delimitar zonas con alta diversidad biologica y endemismos, asi como aquellas que son més vulnerables
a los efectos del cambio climatico (Araujo et al. 2005). En definitiva, la clasificacion bioclimatica se
consolida como una herramienta indispensable para la gestion sostenible del territorio y la adaptacion a
los desafios del cambio global.

Por otra parte, la integracion de técnicas de machine learning en la clasificacion bioclimatica
representa una revolucion en la forma en que entendemos y modelamos la relacion entre el clima y la
biodiversidad. Los algoritmos de ML (machine learning), como los arboles de decision, las redes
neuronales y las maquinas de vectores de soporte, ofrecen la capacidad de analizar grandes conjuntos
de datos climaticos y ecologicos de manera mas eficiente y precisa que los métodos tradicionales
(Reichstein et al. 2019). Esto permite identificar patrones complejos y relaciones no lineales entre
variables climaticas y la distribucién de especies, lo que mejora la capacidad de predecir los impactos
del cambio climatico en los ecosistemas (Elith, J. & Leathwick, J. R. 2009). Ademas, el ML facilita la
integracion de multiples fuentes de datos, como imagenes satelitales, datos de teledeteccion y modelos
climaticos, lo que proporciona una vision mas completa y detallada de la distribucion de los bioclimas
y su relacion con la biodiversidad (Reichstein et al. 2019). En este sentido, el uso de ML en la
clasificacion bioclimatica no solo mejora la exactitud de los modelos, sino que también abre nuevas vias
para la investigacion y la gestion de la biodiversidad en un contexto de cambio global.

Siguiendo estas lineas de investigacion, se desarroll6 un estudio exhaustivo en la cuenca del rio
Caroni, centrado en la identificacion y mapeo de las unidades bioclimaticas, con el proposito de conocer
la compleja relacion climatica en la zona, el uso del suelo y la conservacion de la biodiversidad en esta
region clave de Venezuela (Huber 1997), de manera particular este estudio se centrd en determinar las
zonas de vida basado en la clasificacion de Holdridge, utilizando un método de clasificacion
supervisada de Maxima Verosimilitud (ML, por sus siglas en inglés) (Guisan & Zimmermann 2000).

2. Area de estudio

La cuenca del rio Caroni, ubicada en el centro de la Guayana venezolana, constituye un territorio
de gran importancia estratégica para el pais. Esta vasta region, que abarca una superficie de
9,216,908 hectareas (aproximadamente el 10 % del territorio nacional), se extiende por el sureste del
estado Bolivar, desde el punto mas meridional en los 3° 37' de latitud norte, en los limites con Brasil en
la Sierra Pacaraima, hasta su punto mas septentrional en los 8° 21' de latitud norte en la desembocadura
del Caroni en el rio Orinoco. De este a oeste, se extiende desde los 60° 35' de longitud oeste en las
cabeceras del rio Arabopo hasta los 64° 37' de longitud oeste (Sanchez et al. 2016).

La cuenca del Caroni se caracteriza por su extraordinaria biodiversidad, resultado de la
combinacion de factores climaticos, geoldgicos y altitudinales que dan origen a una gran variedad de
ecosistemas, desde bosques hiimedos tropicales hasta sabanas y tepuyes (Huber 2001). Esta riqueza
bioldgica incluye una gran cantidad de especies endémicas y amenazadas, lo que convierte a la region
en un area prioritaria para la conservacion de la biodiversidad a nivel global (PNUD 2010).
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Ademas de su valor ecoldgico, la cuenca del Caroni juega un papel fundamental en el desarrollo
socioeconémico de Venezuela. La region alberga importantes represas hidroeléctricas, como Guri,
Caruachi y Macagua, que generan un alto porcentaje de la energia eléctrica consumida en el pais.
Asimismo, la cuenca del Caroni es una fuente vital de recursos naturales, como agua, madera y
minerales, que sustentan diversas actividades econdémicas y el bienestar de las comunidades locales.

La cuenca del rio Caroni, se configura como un complejo mosaico de subcuencas, cada una con
un régimen climatico y caracteristicas biogeograficas particulares (Huber 2001). Esta se divide en 5
grandes subcuencas: Bajo Caroni, Medio Caroni, Alto Caroni, Bajo Paragua y Alto Paragua. EI Alto
Caroni, dominado por el bosque muy humedo tropical, se distingue por sus elevadas precipitaciones y
temperaturas calidas constantes, condiciones que favorecen el desarrollo de bosques ombroéfilos siempre
verdes de extraordinaria riqueza floristica y faunistica (Meier & Huber 2004). En contraste, el Medio
Caroni se caracteriza por un clima de sabana tropical, con una estacién seca marcada y una estacion
lluviosa mas prolongada, modelando un paisaje de sabanas y bosques de galeria que alberga una fauna
diversa, incluyendo especies emblematicas como el venado y el jaguar (MARNR 1992). El Bajo Caroni,
en su transicion entre la sabana y el bosque hiimedo tropical, comparte elementos climaticos con el
Medio Caroni, pero con precipitaciones ligeramente mas abundantes, lo que se traduce en una
vegetacion donde los bosques semideciduos y de galeria cobran mayor protagonismo (MARNR 1992).
Las subcuencas del Alto y Bajo Paragua, por su parte, replican patrones climaticos y biogeograficos
similares al Alto y Medio Caroni, respectivamente, con el primero dominado por bosques ombrofilos
siempreverdes y el segundo por sabanas y bosques de galeria (MARNR 1992, Huber 2001).
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Figura 1. Mapa de la Cuenca del rio Caroni

2.1. Metodologia

Este estudio adopt6 un enfoque basado en datos globales para la caracterizacion climatica de la
cuenca del rio Caroni, diferenciandose de investigaciones previas. Se emplearon bases de datos de
renombre como CHIRPS (Funk et al. 2015), POWER NASA PROJECT (Stackhouse et al. 2018),
WORLDCLIM (Fick & Hijmans 2017) y ERA5-Land (Hersbach et al. 2020), priorizando la precision
espacial y la disponibilidad de datos actualizados. Esta eleccion metodoldgica permitid superar las
limitaciones de acceso a datos oficiales y la necesidad de interpolacion, minimizando errores y
complementando estudios previos.

Las estimaciones derivadas de estas fuentes, que abarcan precipitacion, temperatura, humedad,
viento, radiacion e insolacion, son fundamentales para analisis de ecosistemas, modelado de nichos,
estudios de cambio climatico y evaluacién de impactos ambientales (Hijmans ef al. 2005). Su uso se
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extiende a informes nacionales a la CMNUCC, dada la escasez de datos de observacion en superficie.
El acceso gratuito y la continuidad de la linea base climatica (1981-2020) son ventajas adicionales. Si
bien se reconoce la incertidumbre inherente a estos productos, su aplicaciéon ofrece una oportunidad
invaluable para comprender el clima de la cuenca del Caroni, crucial para la gestion de la biodiversidad
y la adaptacion al cambio climético.

Para el calculo de la Evapotranspiracion Potencial (ETP), se emple6 el método de Hamon (1961),
que es un enfoque empirico ampliamente reconocido por su simplicidad y aplicabilidad en diversas
condiciones climaticas (Allen et al. 1998). Este método se basa en la relacion fundamental entre la
temperatura del aire y la demanda de agua por parte del clima, la cual esta intrinsecamente ligada a la
energia disponible en el entorno (Monteith, 1965). La ecuacion utilizada para estimar la ETP es la
siguiente:

Ecuacion 1 ETPyamon = 13.97 x d x D?x W,

donde la ETP, estd expresada en milimetros por mes, d es el nimero de dias en un mes, D es la
media mensual de horas de luz diurna en unidades de 12 hrs, W, es un término de densidad de vapor de
agua saturado, en gramos por metro cubico, y T corresponde con la Temperatura Media Anual,
calculado por:

.. 4.95xe0.062xT
Ecuacién 2 W, = BT

La siguiente en la Tabla 1 expresa las unidades de medidas obtenidas y fuentes de datos desde
cada una de las bases de datos en funcion de las variables requeridas. Notese como las variables de
Temperatura Maxima Anual, Temperatura Minima Anual, Temperatura Media Anual, Humedad
Relativa y Evapotranspiracion poseen una resolucion espacial de 30 km, mientras que la Precipitacion
posee una mejor resolucion espacial pero que implicé un mayor costo computacional.

Tabla 1
RESOLUCION
VARIABLE FUENTE DE CELDA UNIDADES
) CHIRPS
PRECIPITACION 5k
¢ clo https://www.chc.ucsb.edu/data/chirps >-5 km mm
TEMPERATURA .
MAXIMA ANUAL 30 km ¢
NASA POWER PROJECT'S DATA
TEMPERATURA https://power.larc.nasa.gov 30 km °C
MINIMA ANUAL
TEMPERATURA MEDIA .
ANUAL 30 km C
HUMEDAD RELATIVA NASA POWER PROJECT’S DATA 30 km o
https://power.larc.nasa.gov
FUENTE DE ENTRADA LA
, TEMPERATURA MEDIA ANUAL
E .
VAPOTRANSPIRACION | ¢\ 1ADA BAJO LA METODOLOGIA DE 30 km mm
HAMON

www.geofocus.org
67


http://www.geo-focus.org/

Guerrero-Evaristo et al., 2025 GeoFocus, 36

Fuente: elaboracion propia sobre las fuentes y datos recolectados.

Para representar el comportamiento espacial de cada variable climatica a nivel mensual y anual,
se utilizé el método de Regresion Ponderada Geografica (GWR) (Fotheringham et al. 2002). La GWR
es una técnica de regresion espacial que permite modelar relaciones no estacionarias, es decir, aquellas
que varian geograficamente (Foody 2004).

A diferencia de los modelos de regresion global, que asumen que la relacion entre las variables
es la misma en toda el area de estudio, la GWR permite crear modelos locales que se ajustan a las
particularidades de cada ubicacion, donde se ajusta una ecuacion de regresion a todas las entidades del
conjunto de datos, pero los coeficientes de regresion no son fijos, sino que dependen de las coordenadas
geogréaficas de las observaciones (Lloyd, 2010). Esto se logra mediante la introduccioén de una funcion
de ponderacion que asigna mayor peso a las observaciones cercanas al punto donde se calcula la
regresion local y menor peso a las observaciones mas lejanas. La ecuacion de regresion para cada
ubicacion i se define de la siguiente forma:

Ecuacion 3 Vi = Bo(ui,vi) + Ik Bie (s, vi) x + &
donde:
e y; eselvalor de la variable dependiente en la ubicacién i
e (u;,v;) son las coordenadas espaciales de la ubicacion i
o Bo(u;,v;) es el intercepto de la regresion local en la ubicacion i
e B (u;,v;) es el coeficiente de la variable explicativa k en la regresion local
en la ubicacion i
e x;. es el valor de la variable explicativa k en la ubicacién i
e ¢ eselerrordelaregresion local en la ubicacién i

La ventaja de este método es que permite capturar variaciones locales en los datos que los modelos
globales pueden pasar por alto (Fotheringham, Brunsdon & Charlton, 2002). Ademas, la GWR tiene en
cuenta la autocorrelacion espacial, que es la tendencia de las ubicaciones cercanas a influirse entre si
(Lloyd, 2010). La GWR requiere calibrar el ancho de influencia (bandwidth), que determina el tamafio
del area local que se utiliza para calcular cada ecuacion de regresion. En este estudio, para las variables
Temperatura Media Anual, Temperatura Minima Anual, Temperatura Méaxima Anual y Humedad
Relativa, el ancho de influencia se calibro automaticamente utilizando la funcion gwr.sel de la libreria
de R spgwr; éste estudio aplica el método de validacion cruzada estimando el error cuadratico medio de
prediccion de las regresiones ponderadas geograficamente, eligiendo el ancho de banda que minimiza
este estimador (Fotheringham et al. 2002). Finalmente, la GWR fue ejecutada con los datos calibrados
en el software SAGA-GIS (Conrad et al. 2015). Es preciso sefalar que este método, al ser un tipo de
modelo lineal generalizado, requiere menos observaciones que otros métodos de estadistica espacial,
como la geoestadistica, en la cual se requiere de al menos 150 observaciones (Oliver & Webster 2015).
En el caso de la Evapotranspiracion la misma se estimo utilizando un script de R con datos de entrada
de la Temperartura Media estimada, utilizando la GWR y las ecuacioness 1 y 2.

Cabe destacar que los datos de precipitacion correspondieron con un caso especial de manejo de
datos. En este sentido, se cred un script de R y la libreria raster para procesar datos geoespaciales
(Hijmans 2025), este lee los datos de precipitacion media de cada mes como un "raster brick" (un
conjunto de capas raster), para luego calcular el promedio de precipitacion para cada afo (de enero a
diciembre) durante un periodo especifico (1983-2020, que comprende 38 afios), con esto aludimos a la
precipitacion anual acumulada. Finalmente, estos mapas de precipitacion promedio mensual se
guardaron como nuevos archivos GeoTIFF, proporcionando una media climatologica mensual para la
region de interés. Finalmente, a cada rdster mensual de precipitacion se le ejecutd la GWR en SAGA-
GIS (Conrad et al. 2015) utilizando el modulo Geographically Weighted Regression for grid
downscaling, debido al costo computacional se utilizé un ancho de banda local de tipo Gaussiano con 7
pixeles, el raster de precipitacion media anual para la clasificacion se obtuvo mediante la suma de los
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doce de los rasters mensuales (véase los métodos y procedimientos en Fortheringham et al. 1998;
Fortheringham et al. 2002, Lloyd 2010, Zhang et al. 2018).

Con en el fin de validar la calidad de los productos del GWR se llevo a cabo una validacion
cruzada (Hastie et al. 2009), la misma se realizé mediante la evaluacion del Error Medio (ME), el Error
Absoluto Medio (MAE) y la Raiz del Error Cuadratico Medio (RMSE) (Willmott & Matsuura 2006).
Estas métricas permitieron cuantificar la exactitud de las estimaciones climaticas y evaluar su ajuste a
los datos observados. El ME, que representa la diferencia promedio entre los valores medidos y los
valores pronosticados, es ttil para identificar posibles sesgos en las estimaciones (Legates & McCabe
1999). El MAE, por su parte, mide la magnitud promedio de los errores, independientemente de su
direccion (Chai & Draxler 2014). E1 RMSE, finalmente, proporciona una medida de la dispersion de los
errores, siendo mas sensible a los valores atipicos (Hyndman & Koehler 2006). Es importante destacar
que, gracias al teorema del limite central, se espera que los errores de las estimaciones climaticas se
distribuyan de forma aproximadamente normal, lo que justifica el uso de estas métricas para evaluar la
precision de las cartas climaticas (Rice 2007).

A suvez, se aplico el método de clasificacion de Maxima Verosimilitud (ML), y este corresponde
con un enfoque estadistico que, a diferencia de los deterministicos, reconocen la inherente incertidumbre
en los fenomenos del mundo real, ya que, al incorporar la probabilidad, los modelos estadisticos
permiten cuantificar y gestionar el riesgo asociado a las decisiones (Gujarati & Porter 2009). Esta
perspectiva probabilistica es fundamental, ya que muchos fendmenos naturales, exhiben una
variabilidad intrinseca que no puede ser completamente capturada por modelos puramente
deterministicos, como lo es la superposicion cartografica tradicional, puesto que la variable dependiente
no estd univocamente determinada por las variables independientes, sino que su valor se describe
mediante una distribucion de probabilidad y un término de error en los datos, reflejando la incertidumbre
inherente al proceso (Gujarati & Porter 2009). Esta es una herramienta ampliamente utilizada en la
generacion de capas de cobertura a partir de informacion multiespectral (Richards & Jia 2006). Sin
embargo, su aplicacion se extiende mas alla de este ambito, abarcando también estudios de clasificacion
climatica y analisis de ecosistemas (Chuvieco 2002). En el contexto de la clasificacion climatica, el ML
permite categorizar diferentes unidades climaticas o zonas de vida a partir de variables climaticas
cuantitativas, como temperatura, precipitacion y humedad (Virla & Pirela 2012). De esta manera, se
pueden generar mapas de clasificacion climatica que delimitan areas con caracteristicas climaticas
similares.

El clasificador de Maxima Verosimilitud (ML) es un método estadistico bayesiano que asigna
cada observacién a la clase que maximiza la probabilidad a posteriori de pertenencia, basada en la
funcién de densidad de probabilidad multivariada de cada clase (Bishop 2006). Este clasificador asume
que las observaciones de cada clase siguen una distribuciéon normal multivariada, caracterizada por un
vector de medias y una matriz de covarianza (Duda et al. 2001). El proceso de clasificacion implica
estimar los parametros de la distribucion normal multivariada para cada clase a partir de un conjunto de
entrenamiento de observaciones etiquetadas. Una vez estimados los pardmetros, se calcula la
probabilidad a posteriori de que una nueva observacion pertenezca a cada clase utilizando el teorema de
Bayes. La observacion se asigna a la clase con la mayor probabilidad a posteriori. El clasificador ML es
un método ampliamente utilizado en diversas aplicaciones, incluyendo la clasificacion de imagenes de
teledeteccion, el reconocimiento de patrones y la clasificacion de datos climaticos (Hastie ef al. 2009).
Su popularidad se debe a su capacidad para trabajar con datos multivariados, su fundamento estadistico
solido y su relativa simplicidad de implementacion.

Se adopt6 un enfoque de aprendizaje supervisado para la clasificacion de ecosistemas, utilizando
la clasificacion climatica de Holdridge (CVG-EDELCA 2004. Cap. 2 Clasificacion climdtica segun
Holdridge), verificada con expertos del Plan Maestro de la Cuenca del Rio Caroni (CVG-EDELCA
2004. Cap. 6 Ecologia del paisaje), como referencia. Esta metodologia permitio relacionar las variables
climaticas analizadas con la distribucion de ecosistemas especificos en la cuenca, basandose en la
premisa de que las zonas de vida de Holdridge reflejan las condiciones climaticas que influyen en dicha
distribucion.
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Formalmente, el método de ML calcula la probabilidad de que ese pixel pertenezca a cada una de
las clases, basandose en su vector de valores mutivariantes y en los parametros estadisticos de cada clase
(vector de medias y matriz de covarianza). Este es un método de clasificacion supervisada derivado del
teorema de Bayes, que establece que la distribucion a posteriori P (i|w), es decir, la probabilidad de que
un pixel con el vector de caracteristicas w pertenezca a la clase i, viene dada por:

. : _ P(ilw)P(D)
Ecuacién 4 P(ilw) = T Pw)

Donde P(i|w) es la funcion de Verosimilitud, P(i) es la informacion a priori, es decir, la
probabilidad de que la clase i se encuentre en la zona de estudio y P(w) es la probabilidad de que w se
encuentre en la zona de estudio, que puede escribirse como:

Ecuacion 5 P(w) = XM, P(i|lw)P(i)

Doénde M es el nimero de clases. P(w) se trata a menudo como una normalizacion
para garantizar que Y12, P(i|w)P(i) suma 1. El pixel x se asigna a la clase i mediante la regla:

Ecuacion 6 x €isiP(ilw) > P(jlw)paratodoj # i

Computacionalmente, la ecuacion para calcular la probabilidad de que un pixel x pertenezca a la
clase i es:

Ecuaciéon 7 P(x|w) = InP(wli) = —%(w —u)C N (w—w) - gln(Zn) - %ln aec:h
Donde:
e P(x|wi): es la probabilidad de que el pixel x pertenezca a la clase w.
e N:es el nimero de variables climaticas utilizadas.
e u;: es el vector de medias de la clase i.

El pixel se asigna a la clase que tenga la mayor probabilidad P (x|wi) (Ahmad et al. 2012).

Como bandas de entrada provenientes de fuentes globales de datos anuales para las variables a
partir de fuentes de datos globales, esta base incluyd variables como precipitacion, temperatura
(méxima, media y minima), humedad relativa, y evapotranspiracion, mejoradas con la GWR por sus
siglas en inglés, ademas se incluyd el Modelo Digital Elevacion proveniente del SRTM como
complemento fundamental para caracterizar el clima de la cuenca; cabe de destacar que todas las
variables de entradas tenian una resolucion espacial de 90 m. Es importante destacar que la clasificacion
ML fue ejecutada en el software SAGA-GIS (Conrad et al. 2015).

La evaluacion de la precision de una clasificacion de imagenes es un paso fundamental para
determinar la calidad y confiabilidad de los resultados obtenidos. En este estudio, se llevo a cabo una
evaluacion rigurosa de la exactitud de la clasificacion, comparando el resultado con datos de referencia
independientes. Se utilizaron métricas ampliamente reconocidas en la literatura, como la matriz de
confusion, la precision global, la exactitud del usuario y la exactitud del productor (Congalton & Green
2008). La matriz de confusion, también conocida como tabla de contingencia, es una herramienta
esencial para visualizar y analizar los resultados de la clasificacion. Esta tabla compara las clases
asignadas por el clasificador con las clases de referencia, permitiendo identificar los errores de
clasificacion y cuantificar la exactitud de cada clase (Foody 2002). A partir de la matriz de confusion,
se derivan métricas como la precision global, que representa el porcentaje de pixeles correctamente
clasificados; la exactitud del usuario, que indica la probabilidad de que un pixel clasificado como
perteneciente a una clase realmente pertenezca a esa clase; y la exactitud del productor, que representa
la probabilidad de que un pixel de referencia de una clase haya sido correctamente clasificado (Lillesand
et al. 2015). En este estudio, se empled un disefio de muestreo aleatorio estratificado para seleccionar
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las unidades de muestreo para la evaluacion de la precision y exactitud. Este tipo de muestreo es eficiente
para datos con comportamiento lineal (Quenouille 1949), como los que se analizan en este estudio
(Ahmad & Quegan 2012). Se seleccionaron 118 poligonos que representan 1,115,576 ha, esto
corresponde con del 10 % del area de la Cuenca del Rio Caroni, lo que proporciona una muestra
representativa para la evaluacion de la precision y exactitud.
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Figura 2. Mapa de distribucion heterogénea de zonas de vida refleja, areas de entrenamiento.

La superficie total evaluada en la matriz de confusion esta distribuida en ocho zonas de vida
distintas dentro de la cuenca del rio Caroni, sumando un total de 1,115,576 hectareas. El Bosque
Humedo Tropical se destaca como la zona de vida mas extensa, abarcando 460,852 hectareas, lo que
representa un 41.3 % del area total evaluada. Le sigue el Bosque Seco Tropical con 330,898 hectareas
(29.7 %). El Bosque Muy Humedo Premontano ocupa 189,786 hectareas (17.0 %). En contraste, otras
zonas de vida como el Bosque Himedo Premontano (16,752 ha), Bosque Muy Humedo Tropical
(75,670 ha), Bosque Muy Himedo Montano Bajo (5,096 ha), Bosque Pluvial Montano Bajo (10,510 ha)
y Bosque Pluvial Premontano (26,012 ha) representan extensiones menores en la superficie total
evaluada. Esta distribucion heterogénea de zonas de vida refleja la complejidad y diversidad
bioclimatica de la cuenca del rio Caroni, resaltando la necesidad de estrategias de gestion diferenciadas
para cada ecosistema, considerando su vulnerabilidad y los servicios ecosistémicos que proveen.

3. RESULTADOS

Se presenta a continuacion la validacion cruzada de los diferentes indicadores de exactitud de las
variables climaticas mejoradas con la GWR. Aqui se sefiala ante todo que el Error Medio (ME) se utiliza
para evaluar el grado de sesgo en las estimaciones siguiendo la lectura de Li y Heap (2014),
reconociendo el sesgo como la diferencia media entre el error y el valor real del parametro que se esta
estimando (Isaaks & Srivastava 1989). En tal sentido, surge la inherente precaucion al usar el ME como
indicador de exactitud, ya que los errores positivos y negativos pueden contrarrestarse entre si, lo que
puede llevar a un ME que sea menor que el error real (Nalder & Wein 1998). De tal modo, el Error
Medio Cuadratico Estandarizado (RMSE) terminé proporcionando una medida del tamafio del error,
pero es sensible a los valores atipicos, ya que otorga un peso considerable a los errores grandes
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(Hern&ndez-Stefanoni et al. 2006). En contraste, el Error Absoluto Medio (MAE) es menos sensible a
los valores extremos (Willmott 1982, Vicente-Serrano et al. 2003) y refleja hasta qué punto la
estimacidn puede estar equivocada (Nalder & Wein 1998). En este sentido, cabe destacar que los valores
con peor desempefio son la precipitacion media anual, temperatura anual media minima y la
Temperatura Media Anual Maxima; esto es indicativo de dos posibles situaciones, el modelo GWR no
esta correctamente especificado y/o se estan obviando variables independientes relevantes. Notese que
no se presentan las métricas de la ETP, ya que esta es derivada de la ecuacion de Hamon descrita
previamente. A continuacion, se presentan los valores en la Tabla 2, es de destacar que los resultados
no se presentan normalizados.

Tabla 2
] Estadistico
Variable
ME MAE RMSE
Precipitacion (mm) -39.09 | 323.53 | 459.85
Temperatura Media
Anual (°C) -0.37 1.39 1.57
Temperatura Minima
Anual (°C) -3.21 3.21 3.50
Temperatura Maxima
Anual (°C) 5.09 5.09 5.31
Humedad Relativa (%) 1.76 3.64 4.15

Fuente: elaboracion propia sobre los datos obtenidos

Los resultados de la evaluacion de la exactitud revelaron que la clasificacion en general tiene un
93 % de acierto global. Sin embargo, se identificaron algunas clases con menor exactitud, como el
bosque pluvial pre montano, el bosque muy himedo tropical y el bosque himedo pre montano. Estos
resultados sugieren que estas clases pueden presentar estructuras transicionales que no fueron capturadas
adecuadamente por el modelo de clasificacion de Maxima Verosimilitud (ML).

Es importante destacar que, si bien la clasificacion en general muestra una alta exactitud, los
resultados deben ser interpretados con cautela, teniendo en cuenta las limitaciones identificadas en
algunas clases. No obstante, se argumenta que, debido al teorema de los grandes nimeros, el supuesto
de normalidad multivariante se cumple, lo que justifica el uso del estimador de Maxima Verosimilitud
(ML) como el mejor estimador lineal e insesgado (MELI) (Hastie, Tibshirani & Friedman 2009). En
este sentido, se presenta a continuacion la exactitud de la clasificacion comparando el resultado con
datos de referencia independientes (por ejemplo, datos de campo o imagenes de mayor resolucion). Se
utilizaron métricas como la matriz de confusion, la precision global, la exactitud del usuario y la
exactitud del productor para cuantificar la exactitud de la clasificacion.

Como el resultado obtenido corresponde con una capa categorica, el producto de validacion
requerido es una matriz de confusion, la misma corresponde con una tabla de aciertos entre los pixeles
clasificados con los evaluados como verdad terreno, en la misma la diagonal principal representa
los pixeles correctamente clasificados en Tabla 2; ndtese como las clases de Bosque pluvial pre
montano, Bosque muy humedo tropical y Bosque hiimedo pre montano son las que peor desempefio
tienen dentro de la clasificacion, ya que presenta estructuras transitivas no capturada por el modelo de
clasificacion de Maxima Verosimilitud (ML). Asi mismo, es conveniente destacar que en general el
resto de las clases superan el 90 % de los aciertos globales, con lo que se puede considerar que las
mismas estan convenientemente representadas dentro del modelo, y finalmente, resaltar que en general
la clasificacion tiene un 93 % de acierto global; estos resultados deben ser vistos con cautela, reiteramos,
debido a los elementos previamente descritos.

Es gracias al teorema de los grandes niimeros, el supuesto de normalidad multivariante se cumple,
lo que justifica el uso del estimador de Maxima Verosimilitud (ML) como el mejor estimador lineal e
insesgado (MELI) (Hastie et al. 2009).
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TABLA 3 Matriz de Confusion de la Clasificacion Supervisada

BOSQUE
BOSQUE MUY BOSQUE Exactitud
BOSQUE BOSQUE BOSQUE MUY MUY BOSQUE BOSQUE HUMEDO PLUVIAL del
CLASE SECO HUMEDO HUMEDO HUMEDO PLUVIAL HUMEDO MONTANO | MONTANO | Sumadel | Usuario
BIOCLIMATICA | TROPICAL | TROPICAL | PREMONTANO | TROPICAL | PREMONTANO | PREMONTANO BAJO BAJO Usuario (%)
BOSQUE
SECO
TROPICAL 206722 0 0 0 0 0 0 0 206722 100
BOSQUE
HUMEDO
TROPICAL 230 254676 0 359 502 0 0 0 255767 99.57
BOSQUE
MUY HUMEDO
PREMONTANO 0 48 117521 0 3756 4276 194 3 125798 93.42
BOSQUE
MUY HUMEDO
TROPICAL 0 26018 0 46950 0 0 0 0 72968 64.34
BOSQUE
PLUVIAL
PREMONTANO 0 6044 1122 12 11637 1910 123 0 20848 55.81
BOSQUE
HUMEDO
PREMONTANO 0 1466 151 0 0 4268 0 3 5888 72.48
BOSQUE MUY
HUMEDO
MONTANO
BAJO 0 0 0 0 0 0 2807 0 2807 100
BOSQUE
PLUVIAL
MONTANO
BAJO 0 0 0 0 385 0 65 6568 7018 93.58
Suma del
Productor 206952 288252 118794 47321 16280 10454 3189 6574
Exactitud
del Productor TOTAL
(%) 99.89 85.35 98.93 99,22 71.48 40.83 88.02 99.91 (%) 93.31

Fuente: elaboracion propia sobre los datos recolectados.
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En el clasificador de Maxima Verosimilitud (ML) de SAGA GIS, se contiene la informacion
sobre la probabilidad de pertenencia de cada pixel a la clase asignada (Richards & Jia 2006). En otras
palabras, la capa de proximidad determind cuan "seguro" estd el clasificador de un pixel que pertenece
a una clase especifica. Asi los pixeles con valores de proximidad altos generaron mayor confianza,
mientras que los pixeles con valores de proximidad bajos terminaron por delimitar e identificar las zonas
de mayor incertidumbre o transicion entre clases (Lillesand ef al. 2015). Entonces el mapa de
probabilidad/proximidad de la clasificacion de Maxima Verosimilitud (ML) (Figura 4) supera los
enfoques deterministicos al proporcionar no solo la clase asignada a cada pixel, sino también su grado
de certeza. De tal modo, este enfoque revela areas con alta ambigiiedad (como las afectadas por el relieve
o efectos transitivos), donde la probabilidad de clasificacion correcta es baja. Esto permite identificar
limitaciones del modelo y priorizar validaciones en zonas conflictivas, mejorando la confiabilidad del
analisis.

Ademas, la cuantificacion de la probabilidad, una herramienta decisiva para aplicaciones criticas,
ayudoé a conocer el nivel de confianza en la clasificacion, a optimizar recursos y reducir errores. En
consecuencia, mientras un método deterministico oculta las imperfecciones del modelo, el mapa
probabilistico las hace explicitas, facilitando una interpretacién mas transparente y robusta de los
resultados. Esta ventaja lo convierte en una opcidén superior para estudios que requieren evaluar la
exactitud espacial de manera rigurosa (Lillesand et al. 2015). Los resultados revelan que las clases de
bosque muy himedo pre montano y bosque pluvial pre montano presentan las medias de proximidad
mas bajas (85.71 y 85.99, respectivamente), lo que sugiere que la clasificacion en estas areas es menos
confiable, probablemente debido a la presencia de estructuras transicionales o ecotonos no capturadas
adecuadamente por el modelo de clasificacion de Maxima Verosimilitud (ML) (Foody 2002). En
contraste, el Bosque Seco Tropical muestra la media de proximidad mas alta (99.64), lo que indica una
clasificacion mas precisa y confiable. Otras zonas de vida como el Bosque Himedo Premontano (89.84),
Bosque Humedo Tropical (91.45), Bosque Muy Himedo Montano Bajo (96.56), Bosque Muy Humedo
Tropical (93.58) y Bosque Pluvial Montano Bajo (88.11) muestran valores de proximidad intermedios,
lo que sugiere una clasificacion con un nivel de confianza moderado. De tal modo, se hizo necesaria la
revision de los datos de entrenamiento para estas zonas de vida y, a su vez, evaluar si es necesario incluir
muestras adicionales que representen mejor las estructuras transicionales, para ajustar los parametros
del clasificador de maxima verosimilitud, mejorando la discriminacion entre estas clases y considerando
clasificadores alternativos que sean mas adecuados para trabajar con datos de alta complejidad y zonas
de transicion (Congalton & Green 2008).

El mapa de Clasificacion Climatica en la figura 5 obtenido en este estudio revela una notable
diversidad de zonas de vida en la cuenca del rio Caroni, resultado de la interaccion entre la altitud y la
humedad, siguiendo el esquema de Holdridge (1966). Se identificaron tres pisos altitudinales (Tropical,
Premontano y Montano Bajo) combinados con cuatro provincias de humedad (Seca, Himeda, Muy
Humeda y Pluvial), lo que resulté en la delimitacion de ocho zonas de vida distintas: Bosque Seco
Tropical (14.9 %), Bosque Humedo Tropical (30.3 %), Bosque Muy Humedo Tropical (12.4 %),
Bosque Humedo Premontano (7.3 %), Bosque Muy Himedo Premontano (18.1 %), Bosque Pluvial
Premontano (12.6 %), Bosque Muy Humedo Montano Bajo (0.6 %) y Bosque Pluvial Montano Bajo
(3.6 %). Esta distribucion de zonas de vida refleja la complejidad climatica de la cuenca, similar a lo
encontrado en otros estudios de clasificacion climatica en regiones tropicales (e. g. Ramirez et al. 2010
en los Andes colombianos).

La exactitud de la clasificacion fue evaluada en una matriz de confusion, comparando los pixeles
clasificados con datos verificados en terreno (Congalton & Green 2008). Es asi que las clases de bosque
pluvial pre montano, bosque muy humedo tropical y bosque himedo pre montano presentaron menor
desempefio, lo que sugiere la presencia de estructuras transicionales o ecotonos que no fueron capturados
adecuadamente por el modelo de clasificacion de Méaxima Verosimilitud (ML), un problema comun en
areas de alta diversidad biologica en bosques tropicales (Foody & Cutler 2006). No obstante, el resto de
las clases supero el 90 % de exactitud, lo que indica una buena representacion en el modelo. La
clasificacion global alcanzo una exactitud del 93 %, un valor comparable con otros estudios de
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clasificacion de cobertura vegetal (Lillesand et al. 2015), aunque este valor debe interpretarse con
cautela debido a las limitaciones mencionadas.
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Figura 4. Mapa de probabilidad/proximidad

Las caracteristicas climaticas de cada zona de vida fueron analizadas mediante estadisticas
descriptivas (media, rango, desviacion estandar y percentiles) de las variables climaticas a nivel anual y
mensual (Tabla 3). Estos calculos se concretan a nivel de pixel en operaciones rdster-vector, técnica
comun en andlisis espacial (Longley et al. 2015). Adicionalmente, la tipologia climatica en
climadiagramas y en el periodo de crecimiento, que estan definidos por la relacion entre precipitacion y
evapotranspiracion potencial (ETP), son el producto del seguimiento de la propuesta hecha por la FAO
(1998). En el analisis, esto permiti6d identificar la condicion hidrica y la fecha de inicio del periodo
htimedo en cada zona de vida, los cual deviene en informacion fundamental para comprender la
dinamica de los ecosistemas (Walter & Lieth 1967).

El analisis de la temperatura y la precipitacion como indice bioclimatico anual promedio (1981-
2020) revelo que el piso Tropical presenta temperaturas anuales promedio superiores a 24°C y la mayor
variabilidad en la precipitacion (1335 mm - 3732 mm), similar a lo reportado en otras zonas tropicales
(Malhi & Wright, 2004). Este piso abarca el 58 % de la cuenca, con el Bosque Himedo Tropical como
zona de vida predominante (30.3 %), caracterizado por una Temperatura Media Anual de 24°C y una
precipitacion de 2882 mm. El piso Premontano (32.3 % de la cuenca) presenta temperaturas promedio
similares a la cuenca (24 £ 0.2°C), con minimas de 16.3°C y precipitacion promedio de 2456 mm
(2221 mm - 2625 mm). El piso Montano Bajo (4.2 %) registra temperaturas promedio mas bajas
(23.6°C), con minimas de 14.3°C y precipitacion (2440 mm) inferior al promedio anual, mostrando una
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escasa diferencia con el Premontano, lo que sugiere una posible transicion gradual o influencia de
factores locales, como la exposicion y la pendiente (Huber 1995).

En cuanto al resto de las variables climaticas, el Bosque Seco Tropical presenta la mayor ETP
(1333 mm), menor humedad relativa (76.5 %) y mayor velocidad del viento (2.4 m/s), condiciones
tipicas de zonas aridas y semiaridas (Thornthwaite 1948). En el otro extremo, el Bosque Muy Himedo
Montano Bajo registra la menor ETP (1146.8 mm), mayor humedad relativa y las temperaturas maxima
y minima mas bajas (29.2°C y 13.6°C, respectivamente), caracteristicas asociadas a ambientes de alta
montafia (Koérner 2016). El régimen mensual de las variables climaticas es similar en todas las zonas de
vida y estd relacionado con la variacion anual de la radiacion solar, determinada por la posicion
geografica de la cuenca y los movimientos astronomicos, lo que es un patron comin en regiones
tropicales (Barry & Chorley 2010).

En relacion con el periodo de crecimiento, el Bosque Seco Tropical lo inicia en abril, con mayor
disponibilidad hidrica a partir de mayo, un comportamiento tipico de zonas con marcada estacionalidad
(Sarmiento 2002). El Bosque Humedo Tropical lo inicia en marzo, mientras que los Bosques Muy
Humedo Tropical y Himedo Premontano no presentan un periodo en que la ETP supere a la
precipitacion, lo que indica una condicion de alta humedad durante todo el afio, similar a lo encontrado
en otros bosques humedos tropicales (Whitmore 1998). En zonas de mayor altitud, el Bosque Muy
Humedo Premontano inicia su periodo himedo en marzo; el Bosque Pluvial Premontano experimenta
un periodo seco entre enero y marzo; ¢l Bosque Muy Humedo Montano Bajo comienza su periodo
himedo en la primera quincena de marzo; y el Bosque Pluvial Montano Bajo, a finales de marzo, lo que
refleja la influencia de la altitud en la distribucion de las lluvias (Rahbek et al. 2019).
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Siendo el analisis de los box plots una herramienta estadistica que permite visualizar la
distribucion de datos (Wilcox 1949), esta revela caracteristicas distintivas para cada zona de vida, lo que
ayuda a comprender la exactitud de la clasificacion. El Bosque Seco Tropical se distingue claramente
por presentar los promedios mas bajos de precipitacion, altitud y humedad relativa, y los promedios mas
altos de temperatura (media, minima y maxima) y evapotranspiracion potencial (ETP). Esta singularidad
climatica, producto de su ubicacion y condiciones geograficas (Trewartha & Horn 1980), explicaria su
exactitud de clasificacion (cercana al 100 %), ya que es la zona bioclimatica més facilmente
diferenciable. El Bosque Humedo Tropical, en segundo lugar, queda caracterizado por los mayores
valores promedio de precipitacion. Esta variable, fundamental para el desarrollo de la vegetacion en
climas tropicales (Malhi & Wright 2004), seria la que mas influye en su diferenciacion dentro del
clasificador de Maxima Verosimilitud (ML), lo que explicaria su alto porcentaje de acierto global
(97 %).

El Bosque Muy Humedo Premontano, con un 93 % de acierto global, muestra una mayor
confusion con el Bosque Pluvial Premontano y el Bosque Himedo Premontano. La precipitacion y la
altitud serian las variables que mas informacion aportan para su diferenciacion. Esto sugiere que estas
zonas comparten caracteristicas climaticas similares, lo que dificulta su distincion mediante el
clasificador de méaxima verosimilitud, un modelo que asume distribuciones normales multivariadas
(Anderson 2003).

Finalmente, el resto de las zonas de vida comparten un comportamiento similar en el segundo
cuartil (mediana) box plots, diferencidndose principalmente en la varianza de las variables aleatorias.
Esta superposicion de caracteristicas, producto de efectos transicionales entre zonas de vida o ecotonos
(Odum 1992), resultan en la dificultad de su categorizacion y esto explica su menor exactitud en la
clasificacion. La presencia de ecotonos, zonas de transicion entre ecosistemas, es comun en regiones de
alta diversidad bioldgica, generando patrones de clasificacion complejos (Smith 1996).
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4. CONCLUSIONES Y RECOMENDACIONES

Este estudio representa un avance significativo en la comprension del clima y la bioclimatologia
de la cuenca del rio Caroni, proporcionando una base de datos detallada y una caracterizacion
bioclimatica esencial para la gestion integrada del paisaje, la conservacion de la biodiversidad y la
provision de servicios ecosistémicos. La metodologia empleada, que combina datos de fuentes globales
con técnicas avanzadas como la Regresion Ponderada Geografica (GWR) y la reduccion de escala
(downscaling), que permitid mejorar la exactitud y resolucion espacial de los andlisis, generando
informacion valiosa para la toma de decisiones en la gestion de recursos naturales y la planificacion
territorial.

La clasificacion climatica supervisada de Maxima Verosimilitud (ML) demostro ser efectiva para
determinar el numero, distribucion espacial y superficie de las diferentes zonas de vida. Sin embargo, la
metodologia presenta algunas limitaciones importantes que deben ser consideradas en futuros estudios.
En primer lugar, al asumir un proceso estacionario en media y varianza en el espacio-tiempo, no se
incluy¢ el analisis del cambio climatico, un factor crucial que podria tener impactos significativos en la
distribucion y caracteristicas de las zonas de vida. Para abordar esta limitacion, se propone incluir
momentos temporales y evaluar el comportamiento de las zonas de vida a lo largo del tiempo,
incluyendo la posibilidad de migracion, expansion o reduccion de areas, especialmente en aquellas zonas
con mayor efecto de transicion.

En segundo lugar, el clasificador considero datos que expresan la variabilidad media anual, lo que
implica una pérdida de informacion sobre la variabilidad intra-anual. Esta variabilidad, que incluye
cambios estacionales y alteraciones en estacionalidades, es fundamental para comprender la dindmica
de los sistemas bioclimaticos y su respuesta a factores como el cambio climatico. Futuros estudios
deberian considerar la inclusion de datos que reflejen la variabilidad temporal del clima, incluyendo
cambios en medias y varianzas estacionales, para obtener una caracterizacion mas completa y precisa
de las zonas de vida.

Finalmente, el método constituye un aporte valioso para la gestion del territorio, pero es necesario
avanzar hacia metodologias que incorporen la variabilidad temporal del clima y los efectos del cambio
climatico para una mejor comprension de la dinamica de los ecosistemas y una toma de decisiones mas
informada.
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