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RESUMEN  

La clasificación bioclimática es esencial para entender y manejar el territorio de manera más 

sostenible, así como en la gestión de la conservación de la biodiversidad y la evaluación del cambio 

climático. El método de clasificación supervisado de Máxima Verosimilitud (ML), es una herramienta 

poderosa para la clasificación bioclimática. Por ello, se aplicó el Clasificador ML en la cuenca del Rio 

Caroní, se utilizaron datos de fuentes globales, de los que se extrajo promedios de las variables 

climáticas. Para mejorar la resolución espacial del producto se utilizó la Regresión Ponderada 

Geográfica (GWR) y el MDE SRTM de 90 m. Además, el marco de entrenamiento estuvo fundamentado 

en la distribución de los diferentes ecosistemas previamente clasificados según Holdridge. A partir de 

esta metodología se logró una precisión general del 93 % donde las clases de bosque pluvial premontano, 

bosque muy húmedo tropical y bosque húmedo pre montano denotaron el peor desempeño, pues existen 

de por medio estructuras transitivas que el modelo de clasificación no pudo captar. 

 

Palabras clave:  Clasificación de Máxima Verosimilitud, clasificación bioclimática, Regresión Ponderada 

Geográfica. 

 

BIOCLIMATIC CLASSIFICATION IN THE CARONI RIVER BASIN USING THE MAXIMUM 

LIKELIHOOD METHOD 

 

ABSTRACT 

Bioclimatic classification is essential for understanding and managing the territory in a more 

sustainable way, as well as in biodiversity conservation management and climate change assessment. 

The supervised Maximum Likelihood (ML) classification method is a powerful tool for bioclimatic 

classification. Therefore, the ML classifier was applied in the Caroni River basin, using data from global 

sources, from which averages of climatic variables were extracted. Geographic Weighted Regression 

(GWR) and the 90 m SRTM DEM were used to improve the scale. The Holdridge classification was
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applied, this presented an overall accuracy of 93 % the classes of premontane rainforest, very humid 

tropical forest and premontane rainforest denoted the worst performance, as there are transitive 

structures involved that the classification model could not capture. 

 

Key words: Maximum Likelihood Classification, bioclimatic classification, Geographic Weighted 

Regression. 

1. Introducción 

La cuenca del río Caroní, ubicada en la región de la Guayana venezolana, es un territorio de vital 

importancia tanto para Venezuela como para la región. Su vasta extensión y sus características 

hidrográficas únicas la convierten en un elemento clave para el desarrollo socioeconómico y ambiental 

del país. Esta cuenca es fundamental para la generación de energía hidroeléctrica, ya que alberga 

importantes represas como Guri, Caruachi y Macagua, que suministran un alto porcentaje de la 

electricidad consumida en Venezuela (Sánchez, Rosales & Vessuri 2016) y que según el informe sobre 

la Situación de los Recursos Hídricos en Venezuela de 2013 (Martínez et al. 2013) representaba el 70 % 

de la energía hidroeléctrica del país en dicha cuenca para el 2006, al tanto que fuentes más actuales 

sitúan la generación eléctrica general por medio de fuentes renovables para 2023 en un 78,38 % 

(Datosmacro.com 2025). Además, la cuenca del Caroní es un ecosistema de gran valor biológico, hogar 

de una diversidad de especies de flora y fauna, muchas de ellas endémicas y únicas en el mundo (Huber 

2001). Asimismo, esta región juega un papel crucial en la regulación del ciclo hidrológico y en la 

provisión de servicios ecosistémicos esenciales, como la captura de carbono y la conservación de la 

biodiversidad (PNUD 2010). Sin embargo, la cuenca del Caroní también enfrenta desafíos, como la 

deforestación, la minería ilegal y el cambio climático, que amenazan su integridad ecológica y la 

sostenibilidad de sus recursos naturales (SOS Orinoco 2021).  

Por otro lado, la clasificación bioclimática se presenta como una herramienta esencial para 

comprender y gestionar el territorio de manera sostenible, ofreciendo un marco de referencia crucial 

para la toma de decisiones en diversos ámbitos. Esta disciplina, que integra el análisis del clima y sus 

interacciones con los seres vivos, permite delimitar zonas con características ambientales homogéneas, 

facilitando la identificación de ecosistemas y la evaluación de su vulnerabilidad ante el cambio climático 

(Rivas-Martínez et al. 2011). Además, la clasificación bioclimática resulta fundamental para la 

planificación del uso del suelo, la gestión de recursos naturales y la conservación de la biodiversidad, 

ya que proporciona información valiosa sobre la distribución de especies y comunidades vegetales, así 

como sobre su adaptación a las condiciones climáticas locales (Walter & Breckle 2002). 

La clasificación bioclimática, al zonificar el territorio en función de sus características climáticas 

y su relación con la biota, se revela como recurso esencial para comprender y anticipar los impactos del 

cambio climático en los ecosistemas (Thuiller et al. 2005). Al analizar la distribución de especies y 

comunidades vegetales en relación con variables climáticas como la temperatura y la precipitación, se 

pueden establecer modelos predictivos que permitan evaluar la vulnerabilidad de los ecosistemas ante 

escenarios futuros de cambio climático (Guisan & Zimmermann 2000). Estos modelos, basados en la 

clasificación bioclimática, son esenciales para identificar áreas de mayor riesgo y diseñar estrategias de 

conservación y gestión adaptativa que minimicen los efectos negativos del cambio climático en la 

biodiversidad y los servicios ecosistémicos (Araújo et al. 2005). En este contexto, estudios realizados 

en Venezuela y zonas cercanas de Sudamérica han destacado la importancia de la clasificación 

bioclimática para comprender la distribución de la biodiversidad y los impactos del cambio climático 

en esta región Neotropical. Por ejemplo, Huber (1997) realizó una clasificación biogeográfica de la 

Guayana Venezolana, tomando en cuenta factores climáticos y florísticos, mientras que Ramia (2000) 

describió los diferentes tipos de vegetación presentes en el país, incluyendo información sobre su clima 

y distribución geográfica. Asimismo, Josse et al. (2009) presentaron una clasificación de los ecosistemas 

de los Andes, incluyendo zonas de Colombia, Ecuador y Perú, basada en factores climáticos, 

altitudinales y de vegetación. Estos y otros estudios resaltan la necesidad de seguir investigando y 

aplicando la clasificación bioclimática en la región para promover una gestión sostenible del territorio 

y la conservación de la biodiversidad. 
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Además, la clasificación bioclimática proporciona información valiosa para la planificación del 

uso del suelo y la gestión de recursos naturales en un contexto de cambio climático. Al conocer la 

distribución de los bioclimas y su relación con la vegetación y la fauna, se pueden establecer criterios 

para la zonificación del territorio que tengan en cuenta la vulnerabilidad de los ecosistemas y la 

necesidad de mantener la conectividad entre ellos para facilitar la migración de especies y la adaptación 

a nuevas condiciones climáticas (Walter & Breckle 2002). En definitiva, ante el panorama del cambio 

global, la clasificación bioclimática se consolida como una herramienta esencial en la toma de 

decisiones, ya que permite integrar el conocimiento sobre el clima y la biota para promover una gestión 

sostenible del territorio y la conservación de la biodiversidad. 

Al analizar la distribución de especies en función de variables climáticas es posible modelar su 

respuesta a escenarios futuros de cambio climático y anticipar posibles cambios en la composición y 

estructura de las comunidades (Guisan & Zimmermann, 2000). Asimismo, la clasificación bioclimática 

juega un papel crucial en la identificación de áreas prioritarias para la conservación, ya que permite 

delimitar zonas con alta diversidad biológica y endemismos, así como aquellas que son más vulnerables 

a los efectos del cambio climático (Araújo et al. 2005). En definitiva, la clasificación bioclimática se 

consolida como una herramienta indispensable para la gestión sostenible del territorio y la adaptación a 

los desafíos del cambio global. 

Por otra parte, la integración de técnicas de machine learning en la clasificación bioclimática 

representa una revolución en la forma en que entendemos y modelamos la relación entre el clima y la 

biodiversidad. Los algoritmos de ML (machine learning), como los árboles de decisión, las redes 

neuronales y las máquinas de vectores de soporte, ofrecen la capacidad de analizar grandes conjuntos 

de datos climáticos y ecológicos de manera más eficiente y precisa que los métodos tradicionales 

(Reichstein et al. 2019). Esto permite identificar patrones complejos y relaciones no lineales entre 

variables climáticas y la distribución de especies, lo que mejora la capacidad de predecir los impactos 

del cambio climático en los ecosistemas (Elith, J. & Leathwick, J. R. 2009). Además, el ML facilita la 

integración de múltiples fuentes de datos, como imágenes satelitales, datos de teledetección y modelos 

climáticos, lo que proporciona una visión más completa y detallada de la distribución de los bioclimas 

y su relación con la biodiversidad (Reichstein et al. 2019). En este sentido, el uso de ML en la 

clasificación bioclimática no solo mejora la exactitud de los modelos, sino que también abre nuevas vías 

para la investigación y la gestión de la biodiversidad en un contexto de cambio global. 

Siguiendo estas líneas de investigación, se desarrolló un estudio exhaustivo en la cuenca del río 

Caroní, centrado en la identificación y mapeo de las unidades bioclimáticas, con el propósito de conocer  

la compleja relación climática en la zona,  el uso del suelo y la conservación de la biodiversidad en esta 

región clave de Venezuela (Huber 1997),  de manera particular este estudio se centró en determinar las 

zonas de vida basado  en  la clasificación de Holdridge, utilizando un método de clasificación 

supervisada de Máxima Verosimilitud (ML, por sus siglas en inglés) (Guisan & Zimmermann 2000).  

2. Área de estudio 

La cuenca del río Caroní, ubicada en el centro de la Guayana venezolana, constituye un territorio 

de gran importancia estratégica para el país. Esta vasta región, que abarca una superficie de 

9,216,908 hectáreas (aproximadamente el 10 % del territorio nacional), se extiende por el sureste del 

estado Bolívar, desde el punto más meridional en los 3° 37' de latitud norte, en los límites con Brasil en 

la Sierra Pacaraima, hasta su punto más septentrional en los 8° 21' de latitud norte en la desembocadura 

del Caroní en el río Orinoco. De este a oeste, se extiende desde los 60° 35' de longitud oeste en las 

cabeceras del río Arabopó hasta los 64° 37' de longitud oeste (Sánchez et al. 2016). 

La cuenca del Caroní se caracteriza por su extraordinaria biodiversidad, resultado de la 

combinación de factores climáticos, geológicos y altitudinales que dan origen a una gran variedad de 

ecosistemas, desde bosques húmedos tropicales hasta sabanas y tepuyes (Huber 2001). Esta riqueza 

biológica incluye una gran cantidad de especies endémicas y amenazadas, lo que convierte a la región 

en un área prioritaria para la conservación de la biodiversidad a nivel global (PNUD 2010). 

http://www.geo-focus.org/
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Además de su valor ecológico, la cuenca del Caroní juega un papel fundamental en el desarrollo 

socioeconómico de Venezuela. La región alberga importantes represas hidroeléctricas, como Guri, 

Caruachi y Macagua, que generan un alto porcentaje de la energía eléctrica consumida en el país. 

Asimismo, la cuenca del Caroní es una fuente vital de recursos naturales, como agua, madera y 

minerales, que sustentan diversas actividades económicas y el bienestar de las comunidades locales. 

La cuenca del río Caroní, se configura como un complejo mosaico de subcuencas, cada una con 

un régimen climático y características biogeográficas particulares (Huber 2001). Esta se divide en 5 

grandes subcuencas: Bajo Caroní, Medio Caroní, Alto Caroní, Bajo Paragua y Alto Paragua.  El Alto 

Caroní, dominado por el bosque muy húmedo tropical, se distingue por sus elevadas precipitaciones y 

temperaturas cálidas constantes, condiciones que favorecen el desarrollo de bosques ombrófilos siempre 

verdes de extraordinaria riqueza florística y faunística (Meier & Huber 2004). En contraste, el Medio 

Caroní se caracteriza por un clima de sabana tropical, con una estación seca marcada y una estación 

lluviosa más prolongada, modelando un paisaje de sabanas y bosques de galería que alberga una fauna 

diversa, incluyendo especies emblemáticas como el venado y el jaguar (MARNR 1992). El Bajo Caroní, 

en su transición entre la sabana y el bosque húmedo tropical, comparte elementos climáticos con el 

Medio Caroní, pero con precipitaciones ligeramente más abundantes, lo que se traduce en una 

vegetación donde los bosques semideciduos y de galería cobran mayor protagonismo (MARNR 1992). 

Las subcuencas del Alto y Bajo Paragua, por su parte, replican patrones climáticos y biogeográficos 

similares al Alto y Medio Caroní, respectivamente, con el primero dominado por bosques ombrófilos 

siempreverdes y el segundo por sabanas y bosques de galería (MARNR 1992, Huber 2001). 

 
Figura 1. Mapa de la Cuenca del río Caroní 

 

2.1. Metodología  

Este estudio adoptó un enfoque basado en datos globales para la caracterización climática de la 

cuenca del río Caroní, diferenciándose de investigaciones previas. Se emplearon bases de datos de 

renombre como CHIRPS (Funk et al. 2015), POWER NASA PROJECT (Stackhouse et al. 2018), 

WORLDCLIM (Fick & Hijmans 2017) y ERA5-Land (Hersbach et al. 2020), priorizando la precisión 

espacial y la disponibilidad de datos actualizados. Esta elección metodológica permitió superar las 

limitaciones de acceso a datos oficiales y la necesidad de interpolación, minimizando errores y 

complementando estudios previos. 

Las estimaciones derivadas de estas fuentes, que abarcan precipitación, temperatura, humedad, 

viento, radiación e insolación, son fundamentales para análisis de ecosistemas, modelado de nichos, 

estudios de cambio climático y evaluación de impactos ambientales (Hijmans et al. 2005). Su uso se 
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extiende a informes nacionales a la CMNUCC, dada la escasez de datos de observación en superficie. 

El acceso gratuito y la continuidad de la línea base climática (1981-2020) son ventajas adicionales. Si 

bien se reconoce la incertidumbre inherente a estos productos, su aplicación ofrece una oportunidad 

invaluable para comprender el clima de la cuenca del Caroní, crucial para la gestión de la biodiversidad 

y la adaptación al cambio climático. 

Para el cálculo de la Evapotranspiración Potencial (ETP), se empleó el método de Hamon (1961), 

que es un enfoque empírico ampliamente reconocido por su simplicidad y aplicabilidad en diversas 

condiciones climáticas (Allen et al. 1998). Este método se basa en la relación fundamental entre la 

temperatura del aire y la demanda de agua por parte del clima, la cual está intrínsecamente ligada a la 

energía disponible en el entorno (Monteith, 1965). La ecuación utilizada para estimar la ETP es la 

siguiente: 

   

Ecuación 1   𝐸𝑇𝑃𝐻𝑎𝑚𝑜𝑛 = 13.97 𝑥 𝑑 𝑥 𝐷2𝑥 𝑊𝑡 

donde la ETP, está expresada en milímetros por mes, 𝑑 es el número de días en un mes, 𝐷 es la 

media mensual de horas de luz diurna en unidades de 12 hrs, 𝑊𝑡 es un término de densidad de vapor de 

agua saturado, en gramos por metro cúbico, y 𝑇  corresponde con la Temperatura Media Anual, 

calculado por: 

 

Ecuación 2   𝑊𝑡 =
4.95𝑥𝑒0.062𝑥𝑇

100
 

 

La siguiente en la Tabla 1 expresa las unidades de medidas obtenidas y fuentes de datos desde 

cada una de las bases de datos en función de las variables requeridas. Nótese como las variables de 

Temperatura Máxima Anual, Temperatura Mínima Anual, Temperatura Media Anual, Humedad 

Relativa y Evapotranspiración poseen una resolución espacial de 30 km, mientras que la Precipitación 

posee una mejor resolución espacial pero que implicó un mayor costo computacional. 

Tabla 1 

VARIABLE FUENTE 
RESOLUCIÓN 

DE CELDA 
UNIDADES 

PRECIPITACIÓN 
CHIRPS 

https://www.chc.ucsb.edu/data/chirps 
5.5 km mm 

TEMPERATURA 
MÁXIMA ANUAL 

NASA POWER PR0JECT´S DATA  
https://power.larc.nasa.gov 

30 km ˚C 

TEMPERATURA 
MÍNIMA ANUAL 

30 km ˚C 

TEMPERATURA MEDIA 
ANUAL 

30 km ˚C 

HUMEDAD RELATIVA 
NASA POWER PR0JECT´S DATA  

https://power.larc.nasa.gov 
30 km % 

EVAPOTRANSPIRACIÓN 

FUENTE DE ENTRADA LA 
TEMPERATURA MEDIA ANUAL 

ESTIMADA BAJO LA METODOLOGÍA DE 
HAMON 

30 km mm 
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Fuente: elaboración propia sobre las fuentes y datos recolectados. 

 

Para representar el comportamiento espacial de cada variable climática a nivel mensual y anual, 

se utilizó el método de Regresión Ponderada Geográfica (GWR) (Fotheringham et al. 2002). La GWR 

es una técnica de regresión espacial que permite modelar relaciones no estacionarias, es decir, aquellas 

que varían geográficamente (Foody 2004).  

A diferencia de los modelos de regresión global, que asumen que la relación entre las variables 

es la misma en toda el área de estudio, la GWR permite crear modelos locales que se ajustan a las 

particularidades de cada ubicación, donde se ajusta una ecuación de regresión a todas las entidades del 

conjunto de datos, pero los coeficientes de regresión no son fijos, sino que dependen de las coordenadas 

geográficas de las observaciones (Lloyd, 2010). Esto se logra mediante la introducción de una función 

de ponderación que asigna mayor peso a las observaciones cercanas al punto donde se calcula la 

regresión local y menor peso a las observaciones más lejanas. La ecuación de regresión para cada 

ubicación i se define de la siguiente forma: 

 

Ecuación 3 𝑦𝑖 = 𝛽0(𝜇𝑖 , 𝜈𝑖) + ∑ 𝛽𝑘(𝜇𝑖 , 𝜈𝑖)𝑝
𝑘 𝑥𝑖𝑘 + 𝜀𝑖 

dónde: 

• 𝑦𝑖  es el valor de la variable dependiente en la ubicación 𝑖 

• (𝑢𝑖, 𝑣𝑖) son las coordenadas espaciales de la ubicación 𝑖 

• 𝛽0(𝜇𝑖, 𝜈𝑖) es el intercepto de la regresión local en la ubicación 𝑖 

• 𝛽𝑘(𝜇𝑖, 𝜈𝑖) es el coeficiente de la variable explicativa 𝑘 en la regresión local 
en la ubicación 𝑖 

• 𝑥𝑖𝑘 es el valor de la variable explicativa 𝑘 en la ubicación 𝑖 

• 𝜀𝑖  es el error de la regresión local en la ubicación 𝑖 

La ventaja de este método es que permite capturar variaciones locales en los datos que los modelos 

globales pueden pasar por alto (Fotheringham, Brunsdon & Charlton, 2002). Además, la GWR tiene en 

cuenta la autocorrelación espacial, que es la tendencia de las ubicaciones cercanas a influirse entre sí 

(Lloyd, 2010). La GWR requiere calibrar el ancho de influencia (bandwidth), que determina el tamaño 

del área local que se utiliza para calcular cada ecuación de regresión. En este estudio, para las variables 

Temperatura Media Anual, Temperatura Mínima Anual, Temperatura Máxima Anual y Humedad 

Relativa, el ancho de influencia se calibró automáticamente utilizando la función gwr.sel de la librería 

de R spgwr; éste estudio aplica el método de validación cruzada estimando el error cuadrático medio de 

predicción de las regresiones ponderadas geográficamente, eligiendo el ancho de banda que minimiza 

este estimador (Fotheringham et al. 2002). Finalmente, la GWR fue ejecutada con los datos calibrados 

en el software SAGA-GIS (Conrad et al. 2015). Es preciso señalar que este método, al ser un tipo de 

modelo lineal generalizado, requiere menos observaciones que otros métodos de estadística espacial, 

como la geoestadística, en la cual se requiere de al menos 150 observaciones (Oliver & Webster 2015). 

En el caso de la Evapotranspiración la misma se estimó utilizando un script de R con datos de entrada 

de la Temperartura Media estimada, utilizando la GWR y las ecuacioness 1 y 2. 

Cabe destacar que los datos de precipitación correspondieron con un caso especial de manejo de 

datos. En este sentido, se creó un script de R y la librería ráster para procesar datos geoespaciales 

(Hijmans 2025), este lee los datos de precipitación media de cada mes como un "raster brick" (un 

conjunto de capas ráster), para luego calcular el promedio de precipitación para cada año (de enero a 

diciembre) durante un período específico (1983-2020, que comprende 38 años), con esto aludimos a la 

precipitación anual acumulada. Finalmente, estos mapas de precipitación promedio mensual se 

guardaron como nuevos archivos GeoTIFF, proporcionando una media climatológica mensual para la 

región de interés. Finalmente, a cada ráster mensual de precipitación se le ejecutó la GWR en SAGA-

GIS (Conrad et al. 2015) utilizando el módulo Geographically Weighted Regression for grid 

downscaling, debido al costo computacional se utilizó un ancho de banda local de tipo Gaussiano con 7 

píxeles, el raster de precipitación media anual para la clasificación se obtuvo mediante la suma de los 
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doce de los rasters mensuales (véase los métodos y procedimientos en Fortheringham et al. 1998; 

Fortheringham et al. 2002, Lloyd 2010, Zhang et al. 2018).  

Con en el fin de validar la calidad de los productos del GWR se llevó a cabo una validación 

cruzada (Hastie et al. 2009), la misma se realizó mediante la evaluación del Error Medio (ME), el Error 

Absoluto Medio (MAE) y la Raíz del Error Cuadrático Medio (RMSE) (Willmott & Matsuura 2006). 

Estas métricas permitieron cuantificar la exactitud de las estimaciones climáticas y evaluar su ajuste a 

los datos observados. El ME, que representa la diferencia promedio entre los valores medidos y los 

valores pronosticados, es útil para identificar posibles sesgos en las estimaciones (Legates & McCabe 

1999). El MAE, por su parte, mide la magnitud promedio de los errores, independientemente de su 

dirección (Chai & Draxler 2014). El RMSE, finalmente, proporciona una medida de la dispersión de los 

errores, siendo más sensible a los valores atípicos (Hyndman & Koehler 2006). Es importante destacar 

que, gracias al teorema del límite central, se espera que los errores de las estimaciones climáticas se 

distribuyan de forma aproximadamente normal, lo que justifica el uso de estas métricas para evaluar la 

precisión de las cartas climáticas (Rice 2007). 

A su vez, se aplicó el método de clasificación de Máxima Verosimilitud (ML), y este corresponde 

con un enfoque estadístico que, a diferencia de los determinísticos, reconocen la inherente incertidumbre 

en los fenómenos del mundo real, ya que, al incorporar la probabilidad, los modelos estadísticos 

permiten cuantificar y gestionar el riesgo asociado a las decisiones (Gujarati & Porter 2009). Esta 

perspectiva probabilística es fundamental, ya que muchos fenómenos naturales, exhiben una 

variabilidad intrínseca que no puede ser completamente capturada por modelos puramente 

determinísticos, como lo es la superposición cartográfica tradicional, puesto que la variable dependiente 

no está unívocamente determinada por las variables independientes, sino que su valor se describe 

mediante una distribución de probabilidad y un término de error en los datos, reflejando la incertidumbre 

inherente al proceso (Gujarati & Porter 2009). Esta es una herramienta ampliamente utilizada en la 

generación de capas de cobertura a partir de información multiespectral (Richards & Jia 2006). Sin 

embargo, su aplicación se extiende más allá de este ámbito, abarcando también estudios de clasificación 

climática y análisis de ecosistemas (Chuvieco 2002). En el contexto de la clasificación climática, el ML 

permite categorizar diferentes unidades climáticas o zonas de vida a partir de variables climáticas 

cuantitativas, como temperatura, precipitación y humedad (Virla & Pirela 2012). De esta manera, se 

pueden generar mapas de clasificación climática que delimitan áreas con características climáticas 

similares.  

El clasificador de Máxima Verosimilitud (ML) es un método estadístico bayesiano que asigna 

cada observación a la clase que maximiza la probabilidad a posteriori de pertenencia, basada en la 

función de densidad de probabilidad multivariada de cada clase (Bishop 2006). Este clasificador asume 

que las observaciones de cada clase siguen una distribución normal multivariada, caracterizada por un 

vector de medias y una matriz de covarianza (Duda et al. 2001). El proceso de clasificación implica 

estimar los parámetros de la distribución normal multivariada para cada clase a partir de un conjunto de 

entrenamiento de observaciones etiquetadas. Una vez estimados los parámetros, se calcula la 

probabilidad a posteriori de que una nueva observación pertenezca a cada clase utilizando el teorema de 

Bayes. La observación se asigna a la clase con la mayor probabilidad a posteriori. El clasificador ML es 

un método ampliamente utilizado en diversas aplicaciones, incluyendo la clasificación de imágenes de 

teledetección, el reconocimiento de patrones y la clasificación de datos climáticos (Hastie et al. 2009). 

Su popularidad se debe a su capacidad para trabajar con datos multivariados, su fundamento estadístico 

sólido y su relativa simplicidad de implementación. 

Se adoptó un enfoque de aprendizaje supervisado para la clasificación de ecosistemas, utilizando 

la clasificación climática de Holdridge (CVG-EDELCA 2004. Cap. 2 Clasificación climática según 

Holdridge), verificada con expertos del Plan Maestro de la Cuenca del Río Caroní (CVG-EDELCA 

2004. Cap. 6 Ecología del paisaje), como referencia. Esta metodología permitió relacionar las variables 

climáticas analizadas con la distribución de ecosistemas específicos en la cuenca, basándose en la 

premisa de que las zonas de vida de Holdridge reflejan las condiciones climáticas que influyen en dicha 

distribución. 
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Formalmente, el método de ML calcula la probabilidad de que ese píxel pertenezca a cada una de 

las clases, basándose en su vector de valores mutivariantes y en los parámetros estadísticos de cada clase 

(vector de medias y matriz de covarianza). Este es un método de clasificación supervisada derivado del 

teorema de Bayes, que establece que la distribución a posteriori 𝑃(𝑖|𝜔), es decir, la probabilidad de que 

un píxel con el vector de características 𝜔 pertenezca a la clase 𝑖, viene dada por: 

 

Ecuación 4   𝑃(𝑖|𝜔) =  
𝑃(𝑖|𝜔)𝑃(𝑖)

𝑃(𝜔)
 

 

Dónde 𝑃(𝑖|𝜔)  es la función de Verosimilitud, 𝑃(𝑖)  es la información a priori, es decir, la 

probabilidad de que la clase 𝑖 se encuentre en la zona de estudio y 𝑃(𝜔) es la probabilidad de que 𝜔 se 

encuentre en la zona de estudio, que puede escribirse como: 

 

Ecuación 5   𝑃(𝜔) =  ∑ 𝑃(𝑖|𝜔)𝑃(𝑖)𝑀
𝑖=1  

 

Dónde 𝑀 es el número de clases. 𝑃(𝜔) se trata a menudo como una normalización 

para garantizar que ∑ 𝑃(𝑖|𝜔)𝑃(𝑖)𝑀
𝑖=1  suma 1. El píxel 𝑥 se asigna a la clase i mediante la regla: 

 

Ecuación 6  𝑥 ∈ 𝑖 𝑠𝑖 𝑃(𝑖|𝜔) >  𝑃(𝑗|𝜔)𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 𝑗 ≠ 𝑖  
 

Computacionalmente, la ecuación para calcular la probabilidad de que un píxel 𝑥 pertenezca a la 

clase i es: 

 

Ecuación 7 𝑃(𝑥|𝜔) = 𝑙𝑛𝑃(𝜔|𝑖) = −
1

2
(𝜔 − 𝜇𝑖)𝑡𝐶𝑖

−1(𝜔 − 𝜇𝑖) −
𝑁

2
ln(2𝜋) −

1

2
ln (|𝐶𝑖|) 

Donde: 

• 𝑃(𝑥|𝜔𝑖): es la probabilidad de que el píxel 𝑥 pertenezca a la clase 𝜔. 

• 𝑁: es el número de variables climáticas utilizadas. 

• 𝜇𝑖: es el vector de medias de la clase 𝑖. 

El píxel se asigna a la clase que tenga la mayor probabilidad 𝑃(𝑥|𝜔𝑖) (Ahmad et al. 2012).  

Como bandas de entrada provenientes de fuentes globales de datos anuales para las variables a 

partir de fuentes de datos globales, esta base incluyó variables como precipitación, temperatura 

(máxima, media y mínima), humedad relativa, y evapotranspiración, mejoradas con la GWR por sus 

siglas en inglés, además se incluyó el Modelo Digital Elevación proveniente del SRTM como 

complemento fundamental para caracterizar el clima de la cuenca; cabe de destacar que todas las 

variables de entradas tenían una resolución espacial de 90 m. Es importante destacar que la clasificación 

ML fue ejecutada en el software SAGA-GIS (Conrad et al. 2015). 

La evaluación de la precisión de una clasificación de imágenes es un paso fundamental para 

determinar la calidad y confiabilidad de los resultados obtenidos. En este estudio, se llevó a cabo una 

evaluación rigurosa de la exactitud de la clasificación, comparando el resultado con datos de referencia 

independientes. Se utilizaron métricas ampliamente reconocidas en la literatura, como la matriz de 

confusión, la precisión global, la exactitud del usuario y la exactitud del productor (Congalton & Green 

2008). La matriz de confusión, también conocida como tabla de contingencia, es una herramienta 

esencial para visualizar y analizar los resultados de la clasificación. Esta tabla compara las clases 

asignadas por el clasificador con las clases de referencia, permitiendo identificar los errores de 

clasificación y cuantificar la exactitud de cada clase (Foody 2002). A partir de la matriz de confusión, 

se derivan métricas como la precisión global, que representa el porcentaje de píxeles correctamente 

clasificados; la exactitud del usuario, que indica la probabilidad de que un píxel clasificado como 

perteneciente a una clase realmente pertenezca a esa clase; y la exactitud del productor, que representa 

la probabilidad de que un píxel de referencia de una clase haya sido correctamente clasificado (Lillesand 

et al. 2015). En este estudio, se empleó un diseño de muestreo aleatorio estratificado para seleccionar 
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las unidades de muestreo para la evaluación de la precisión y exactitud. Este tipo de muestreo es eficiente 

para datos con comportamiento lineal (Quenouille 1949), como los que se analizan en este estudio 

(Ahmad & Quegan 2012). Se seleccionaron 118 polígonos que representan 1,115,576 ha, esto 

corresponde con del 10 % del área de la Cuenca del Río Caroní, lo que proporciona una muestra 

representativa para la evaluación de la precisión y exactitud. 

 
Figura 2. Mapa de distribución heterogénea de zonas de vida refleja, áreas de entrenamiento. 

La superficie total evaluada en la matriz de confusión está distribuida en ocho zonas de vida 

distintas dentro de la cuenca del río Caroní, sumando un total de 1,115,576 hectáreas. El Bosque 

Húmedo Tropical se destaca como la zona de vida más extensa, abarcando 460,852 hectáreas, lo que 

representa un 41.3 % del área total evaluada. Le sigue el Bosque Seco Tropical con 330,898 hectáreas 

(29.7 %). El Bosque Muy Húmedo Premontano ocupa 189,786 hectáreas (17.0 %). En contraste, otras 

zonas de vida como el Bosque Húmedo Premontano (16,752 ha), Bosque Muy Húmedo Tropical 

(75,670 ha), Bosque Muy Húmedo Montano Bajo (5,096 ha), Bosque Pluvial Montano Bajo (10,510 ha) 

y Bosque Pluvial Premontano (26,012 ha) representan extensiones menores en la superficie total 

evaluada. Esta distribución heterogénea de zonas de vida refleja la complejidad y diversidad 

bioclimática de la cuenca del río Caroní, resaltando la necesidad de estrategias de gestión diferenciadas 

para cada ecosistema, considerando su vulnerabilidad y los servicios ecosistémicos que proveen. 

3. RESULTADOS 

Se presenta a continuación la validación cruzada de los diferentes indicadores de exactitud de las 

variables climáticas mejoradas con la GWR. Aquí se señala ante todo que el Error Medio (ME) se utiliza 

para evaluar el grado de sesgo en las estimaciones siguiendo la lectura de Li y Heap (2014), 

reconociendo el sesgo como la diferencia media entre el error y el valor real del parámetro que se está 

estimando (Isaaks & Srivastava 1989). En tal sentido, surge la inherente precaución al usar el ME como 

indicador de exactitud, ya que los errores positivos y negativos pueden contrarrestarse entre sí, lo que 

puede llevar a un ME que sea menor que el error real (Nalder & Wein 1998). De tal modo, el Error 

Medio Cuadrático Estandarizado (RMSE) terminó proporcionando una medida del tamaño del error, 

pero es sensible a los valores atípicos, ya que otorga un peso considerable a los errores grandes 
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(Hernández-Stefanoni et al. 2006). En contraste, el Error Absoluto Medio (MAE) es menos sensible a 

los valores extremos (Willmott 1982, Vicente-Serrano et al. 2003) y refleja hasta qué punto la 

estimación puede estar equivocada (Nalder & Wein 1998). En este sentido, cabe destacar que los valores 

con peor desempeño son la precipitación media anual, temperatura anual media mínima y la 

Temperatura Media Anual Máxima; esto es indicativo de dos posibles situaciones, el modelo GWR no 

está correctamente especificado y/o se están obviando variables independientes relevantes. Nótese que 

no se presentan las métricas de la ETP, ya que esta es derivada de la ecuación de Hamon descrita 

previamente. A continuación, se presentan los valores en la Tabla 2, es de destacar que los resultados 

no se presentan normalizados. 

Tabla 2  

Variable 
Estadístico 

ME  MAE RMSE 

Precipitación (mm) -39.09 323.53 459.85 

Temperatura Media 

Anual (°C) 
-0.37 1.39 1.57 

Temperatura Mínima 

Anual (°C) 
-3.21 3.21 3.50 

Temperatura Máxima 

Anual (°C) 
5.09  5.09 5.31 

Humedad Relativa (%) 1.76 3.64 4.15 

Fuente: elaboración propia sobre los datos obtenidos 

Los resultados de la evaluación de la exactitud revelaron que la clasificación en general tiene un 

93 % de acierto global. Sin embargo, se identificaron algunas clases con menor exactitud, como el 

bosque pluvial pre montano, el bosque muy húmedo tropical y el bosque húmedo pre montano. Estos 

resultados sugieren que estas clases pueden presentar estructuras transicionales que no fueron capturadas 

adecuadamente por el modelo de clasificación de Máxima Verosimilitud (ML). 

Es importante destacar que, si bien la clasificación en general muestra una alta exactitud, los 

resultados deben ser interpretados con cautela, teniendo en cuenta las limitaciones identificadas en 

algunas clases. No obstante, se argumenta que, debido al teorema de los grandes números, el supuesto 

de normalidad multivariante se cumple, lo que justifica el uso del estimador de Máxima Verosimilitud 

(ML) como el mejor estimador lineal e insesgado (MELI) (Hastie, Tibshirani & Friedman 2009). En 

este sentido, se presenta a continuación la exactitud de la clasificación comparando el resultado con 

datos de referencia independientes (por ejemplo, datos de campo o imágenes de mayor resolución). Se 

utilizaron métricas como la matriz de confusión, la precisión global, la exactitud del usuario y la 

exactitud del productor para cuantificar la exactitud de la clasificación. 

Como el resultado obtenido corresponde con una capa categórica, el producto de validación 

requerido es una matriz de confusión, la misma corresponde con una tabla de aciertos entre los píxeles 

clasificados con los evaluados como verdad terreno, en la misma la diagonal principal representa 

los  píxeles  correctamente clasificados en Tabla 2; nótese como las clases de Bosque pluvial pre 

montano,  Bosque muy húmedo tropical y Bosque húmedo pre montano son las que peor desempeño 

tienen dentro de la clasificación, ya que presenta estructuras transitivas no capturada por el modelo de 

clasificación de Máxima Verosimilitud (ML). Así mismo, es conveniente destacar que en general el 

resto de las clases superan el 90 % de los aciertos globales, con lo que se puede considerar que las 

mismas están convenientemente representadas dentro del modelo, y finalmente, resaltar que en general 

la clasificación tiene un 93 % de acierto global; estos resultados deben ser vistos con cautela, reiteramos, 

debido a los elementos previamente descritos.  

Es gracias al teorema de los grandes números, el supuesto de normalidad multivariante se cumple, 

lo que justifica el uso del estimador de Máxima Verosimilitud (ML) como el mejor estimador lineal e 

insesgado (MELI) (Hastie et al. 2009).
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Figura 3. Mapas de: a) Precipitación Media Anual; b) ETP Media Anual; c) Humedad Relativa Media Anual; c) Modelo Digital de Elevación; e) Temperatura Máxima 

Anual; f) Temperatura Media Anual; g) Temperatura Mínima Anual 
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TABLA 3 Matriz de Confusión de la Clasificación Supervisada 

CLASE  

BIOCLIMATICA 

BOSQUE 

SECO 

TROPICAL 

BOSQUE 

HUMEDO 

TROPICAL 

BOSQUE MUY 

HUMEDO 

PREMONTANO 

BOSQUE 

MUY 

HUMEDO 

TROPICAL 

BOSQUE 

PLUVIAL 

PREMONTANO 

BOSQUE 

HUMEDO 

PREMONTANO 

BOSQUE 

MUY 

HUMEDO  

MONTANO 

BAJO 

BOSQUE 

PLUVIAL 

MONTANO 

BAJO 

Suma del 

Usuario 

Exactitud  

del 

Usuario 

(%) 

BOSQUE 

SECO 

TROPICAL 206722 0 0 0 0 0 0 0 206722 100 
BOSQUE 

HUMEDO 

TROPICAL 230 254676 0 359 502 0 0 0 255767 99.57 
BOSQUE 

MUY HUMEDO 

PREMONTANO 0 48 117521 0 3756 4276 194 3 125798 93.42 
BOSQUE 

MUY HUMEDO 

TROPICAL 0 26018 0 46950 0 0 0 0 72968 64.34 
BOSQUE 

PLUVIAL 

PREMONTANO 0 6044 1122 12 11637 1910 123 0 20848 55.81 
BOSQUE 

HUMEDO 

PREMONTANO 0 1466 151 0 0 4268 0 3 5888 72.48 
BOSQUE MUY 

HUMEDO 

MONTANO 

BAJO 0 0 0 0 0 0 2807 0 2807 100 
BOSQUE 

PLUVIAL 

MONTANO 

BAJO 0 0 0 0 385 0 65 6568 7018 93.58 
Suma del 

Productor 206952 288252 118794 47321 16280 10454 3189 6574 

TOTAL 

(%) 93.31  

Exactitud 

del Productor 

(%) 99.89 85.35 98.93 99.22 71.48 40.83 88.02 99.91 

Fuente: elaboración propia sobre los datos recolectados. 
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En el clasificador de Máxima Verosimilitud (ML) de SAGA GIS, se contiene la información 

sobre la probabilidad de pertenencia de cada píxel a la clase asignada (Richards & Jia 2006). En otras 

palabras, la capa de proximidad determinó cuán "seguro" está el clasificador de un píxel que pertenece 

a una clase específica. Así los píxeles con valores de proximidad altos generaron mayor confianza, 

mientras que los píxeles con valores de proximidad bajos terminaron por delimitar e identificar las zonas 

de mayor incertidumbre o transición entre clases (Lillesand et al. 2015). Entonces el mapa de 

probabilidad/proximidad de la clasificación de Máxima Verosimilitud (ML) (Figura 4) supera los 

enfoques determinísticos al proporcionar no solo la clase asignada a cada pixel, sino también su grado 

de certeza. De tal modo, este enfoque revela áreas con alta ambigüedad (como las afectadas por el relieve 

o efectos transitivos), donde la probabilidad de clasificación correcta es baja. Esto permite identificar 

limitaciones del modelo y priorizar validaciones en zonas conflictivas, mejorando la confiabilidad del 

análisis. 

Además, la cuantificación de la probabilidad, una herramienta decisiva para aplicaciones críticas, 

ayudó a conocer el nivel de confianza en la clasificación, a optimizar recursos y reducir errores. En 

consecuencia, mientras un método determinístico oculta las imperfecciones del modelo, el mapa 

probabilístico las hace explícitas, facilitando una interpretación más transparente y robusta de los 

resultados. Esta ventaja lo convierte en una opción superior para estudios que requieren evaluar la 

exactitud espacial de manera rigurosa (Lillesand et al. 2015). Los resultados revelan que las clases de 

bosque muy húmedo pre montano y bosque pluvial pre montano presentan las medias de proximidad 

más bajas (85.71 y 85.99, respectivamente), lo que sugiere que la clasificación en estas áreas es menos 

confiable, probablemente debido a la presencia de estructuras transicionales o ecotonos no capturadas 

adecuadamente por el modelo de clasificación de Máxima Verosimilitud (ML) (Foody 2002). En 

contraste, el Bosque Seco Tropical muestra la media de proximidad más alta (99.64), lo que indica una 

clasificación más precisa y confiable. Otras zonas de vida como el Bosque Húmedo Premontano (89.84), 

Bosque Húmedo Tropical (91.45), Bosque Muy Húmedo Montano Bajo (96.56), Bosque Muy Húmedo 

Tropical (93.58) y Bosque Pluvial Montano Bajo (88.11) muestran valores de proximidad intermedios, 

lo que sugiere una clasificación con un nivel de confianza moderado. De tal modo, se hizo necesaria la 

revisión de los datos de entrenamiento para estas zonas de vida y, a su vez, evaluar si es necesario incluir 

muestras adicionales que representen mejor las estructuras transicionales, para ajustar los parámetros 

del clasificador de máxima verosimilitud, mejorando la discriminación entre estas clases y considerando 

clasificadores alternativos que sean más adecuados para trabajar con datos de alta complejidad y zonas 

de transición (Congalton & Green 2008). 

El mapa de Clasificación Climática en la figura 5 obtenido en este estudio revela una notable 

diversidad de zonas de vida en la cuenca del río Caroní, resultado de la interacción entre la altitud y la 

humedad, siguiendo el esquema de Holdridge (1966). Se identificaron tres pisos altitudinales (Tropical, 

Premontano y Montano Bajo) combinados con cuatro provincias de humedad (Seca, Húmeda, Muy 

Húmeda y Pluvial), lo que resultó en la delimitación de ocho zonas de vida distintas: Bosque Seco 

Tropical (14.9 %), Bosque Húmedo Tropical (30.3 %), Bosque Muy Húmedo Tropical (12.4 %), 

Bosque Húmedo Premontano (7.3 %), Bosque Muy Húmedo Premontano (18.1 %), Bosque Pluvial 

Premontano (12.6 %), Bosque Muy Húmedo Montano Bajo (0.6 %) y Bosque Pluvial Montano Bajo 

(3.6 %). Esta distribución de zonas de vida refleja la complejidad climática de la cuenca, similar a lo 

encontrado en otros estudios de clasificación climática en regiones tropicales (e. g. Ramírez et al. 2010 

en los Andes colombianos). 

La exactitud de la clasificación fue evaluada en una matriz de confusión, comparando los píxeles 

clasificados con datos verificados en terreno (Congalton & Green 2008). Es así que las clases de bosque 

pluvial pre montano, bosque muy húmedo tropical y bosque húmedo pre montano presentaron menor 

desempeño, lo que sugiere la presencia de estructuras transicionales o ecotonos que no fueron capturados 

adecuadamente por el modelo de clasificación de Máxima Verosimilitud (ML), un problema común en 

áreas de alta diversidad biológica en bosques tropicales (Foody & Cutler 2006). No obstante, el resto de 

las clases superó el 90 % de exactitud, lo que indica una buena representación en el modelo. La 

clasificación global alcanzó una exactitud del 93 %, un valor comparable con otros estudios de 
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clasificación de cobertura vegetal (Lillesand et al. 2015), aunque este valor debe interpretarse con 

cautela debido a las limitaciones mencionadas. 

 
Figura 4. Mapa de probabilidad/proximidad 

Las características climáticas de cada zona de vida fueron analizadas mediante estadísticas 

descriptivas (media, rango, desviación estándar y percentiles) de las variables climáticas a nivel anual y 

mensual (Tabla 3). Estos cálculos se concretan a nivel de píxel en operaciones ráster-vector, técnica 

común en análisis espacial (Longley et al. 2015). Adicionalmente, la tipología climática en 

climadiagramas y en el período de crecimiento, que están definidos por la relación entre precipitación y 

evapotranspiración potencial (ETP), son el producto del seguimiento de la propuesta hecha por la FAO 

(1998). En el análisis, esto permitió identificar la condición hídrica y la fecha de inicio del período 

húmedo en cada zona de vida, los cual deviene en información fundamental para comprender la 

dinámica de los ecosistemas (Walter & Lieth 1967). 

El análisis de la temperatura y la precipitación como índice bioclimático anual promedio (1981-

2020) reveló que el piso Tropical presenta temperaturas anuales promedio superiores a 24°C y la mayor 

variabilidad en la precipitación (1335 mm - 3732 mm), similar a lo reportado en otras zonas tropicales 

(Malhi & Wright, 2004). Este piso abarca el 58 % de la cuenca, con el Bosque Húmedo Tropical como 

zona de vida predominante (30.3 %), caracterizado por una Temperatura Media Anual de 24°C y una 

precipitación de 2882 mm. El piso Premontano (32.3 % de la cuenca) presenta temperaturas promedio 

similares a la cuenca (24 ± 0.2°C), con mínimas de 16.3°C y precipitación promedio de 2456 mm 

(2221 mm - 2625 mm). El piso Montano Bajo (4.2 %) registra temperaturas promedio más bajas 

(23.6°C), con mínimas de 14.3°C y precipitación (2440 mm) inferior al promedio anual, mostrando una 
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escasa diferencia con el Premontano, lo que sugiere una posible transición gradual o influencia de 

factores locales, como la exposición y la pendiente (Huber 1995). 

En cuanto al resto de las variables climáticas, el Bosque Seco Tropical presenta la mayor ETP 

(1333 mm), menor humedad relativa (76.5 %) y mayor velocidad del viento (2.4 m/s), condiciones 

típicas de zonas áridas y semiáridas (Thornthwaite 1948). En el otro extremo, el Bosque Muy Húmedo 

Montano Bajo registra la menor ETP (1146.8 mm), mayor humedad relativa y las temperaturas máxima 

y mínima más bajas (29.2°C y 13.6°C, respectivamente), características asociadas a ambientes de alta 

montaña (Körner 2016). El régimen mensual de las variables climáticas es similar en todas las zonas de 

vida y está relacionado con la variación anual de la radiación solar, determinada por la posición 

geográfica de la cuenca y los movimientos astronómicos, lo que es un patrón común en regiones 

tropicales (Barry & Chorley 2010). 

En relación con el período de crecimiento, el Bosque Seco Tropical lo inicia en abril, con mayor 

disponibilidad hídrica a partir de mayo, un comportamiento típico de zonas con marcada estacionalidad 

(Sarmiento 2002). El Bosque Húmedo Tropical lo inicia en marzo, mientras que los Bosques Muy 

Húmedo Tropical y Húmedo Premontano no presentan un período en que la ETP supere a la 

precipitación, lo que indica una condición de alta humedad durante todo el año, similar a lo encontrado 

en otros bosques húmedos tropicales (Whitmore 1998). En zonas de mayor altitud, el Bosque Muy 

Húmedo Premontano inicia su período húmedo en marzo; el Bosque Pluvial Premontano experimenta 

un período seco entre enero y marzo; el Bosque Muy Húmedo Montano Bajo comienza su período 

húmedo en la primera quincena de marzo; y el Bosque Pluvial Montano Bajo, a finales de marzo, lo que 

refleja la influencia de la altitud en la distribución de las lluvias (Rahbek et al. 2019). 

       
Figura 5. Mapa 3 Clasificación Climática 
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Siendo el análisis de los box plots una herramienta estadística que permite visualizar la 

distribución de datos (Wilcox 1949), esta revela características distintivas para cada zona de vida, lo que 

ayuda a comprender la exactitud de la clasificación. El Bosque Seco Tropical se distingue claramente 

por presentar los promedios más bajos de precipitación, altitud y humedad relativa, y los promedios más 

altos de temperatura (media, mínima y máxima) y evapotranspiración potencial (ETP). Esta singularidad 

climática, producto de su ubicación y condiciones geográficas (Trewartha & Horn 1980), explicaría su 

exactitud de clasificación (cercana al 100 %), ya que es la zona bioclimática más fácilmente 

diferenciable. El Bosque Húmedo Tropical, en segundo lugar, queda caracterizado por los mayores 

valores promedio de precipitación. Esta variable, fundamental para el desarrollo de la vegetación en 

climas tropicales (Malhi & Wright 2004), sería la que más influye en su diferenciación dentro del 

clasificador de Máxima Verosimilitud (ML), lo que explicaría su alto porcentaje de acierto global 

(97 %). 

El Bosque Muy Húmedo Premontano, con un 93 % de acierto global, muestra una mayor 

confusión con el Bosque Pluvial Premontano y el Bosque Húmedo Premontano. La precipitación y la 

altitud serían las variables que más información aportan para su diferenciación. Esto sugiere que estas 

zonas comparten características climáticas similares, lo que dificulta su distinción mediante el 

clasificador de máxima verosimilitud, un modelo que asume distribuciones normales multivariadas 

(Anderson 2003). 

Finalmente, el resto de las zonas de vida comparten un comportamiento similar en el segundo 

cuartil (mediana) box plots, diferenciándose principalmente en la varianza de las variables aleatorias. 

Esta superposición de características, producto de efectos transicionales entre zonas de vida o ecotonos 

(Odum 1992), resultan en la dificultad de su categorización y esto explica su menor exactitud en la 

clasificación. La presencia de ecotonos, zonas de transición entre ecosistemas, es común en regiones de 

alta diversidad biológica, generando patrones de clasificación complejos (Smith 1996).
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Figura 6. Box plots por zonas de vida/variable analizada 
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4. CONCLUSIONES Y RECOMENDACIONES 

Este estudio representa un avance significativo en la comprensión del clima y la bioclimatología 

de la cuenca del río Caroní, proporcionando una base de datos detallada y una caracterización 

bioclimática esencial para la gestión integrada del paisaje, la conservación de la biodiversidad y la 

provisión de servicios ecosistémicos. La metodología empleada, que combina datos de fuentes globales 

con técnicas avanzadas como la Regresión Ponderada Geográfica (GWR) y la reducción de escala 

(downscaling), que permitió mejorar la exactitud y resolución espacial de los análisis, generando 

información valiosa para la toma de decisiones en la gestión de recursos naturales y la planificación 

territorial. 

La clasificación climática supervisada de Máxima Verosimilitud (ML) demostró ser efectiva para 

determinar el número, distribución espacial y superficie de las diferentes zonas de vida. Sin embargo, la 

metodología presenta algunas limitaciones importantes que deben ser consideradas en futuros estudios. 

En primer lugar, al asumir un proceso estacionario en media y varianza en el espacio-tiempo, no se 

incluyó el análisis del cambio climático, un factor crucial que podría tener impactos significativos en la 

distribución y características de las zonas de vida. Para abordar esta limitación, se propone incluir 

momentos temporales y evaluar el comportamiento de las zonas de vida a lo largo del tiempo, 

incluyendo la posibilidad de migración, expansión o reducción de áreas, especialmente en aquellas zonas 

con mayor efecto de transición. 

En segundo lugar, el clasificador consideró datos que expresan la variabilidad media anual, lo que 

implica una pérdida de información sobre la variabilidad intra-anual. Esta variabilidad, que incluye 

cambios estacionales y alteraciones en estacionalidades, es fundamental para comprender la dinámica 

de los sistemas bioclimáticos y su respuesta a factores como el cambio climático. Futuros estudios 

deberían considerar la inclusión de datos que reflejen la variabilidad temporal del clima, incluyendo 

cambios en medias y varianzas estacionales, para obtener una caracterización más completa y precisa 

de las zonas de vida. 

Finalmente, el método constituye un aporte valioso para la gestión del territorio, pero es necesario 

avanzar hacia metodologías que incorporen la variabilidad temporal del clima y los efectos del cambio 

climático para una mejor comprensión de la dinámica de los ecosistemas y una toma de decisiones más 

informada. 
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