Geo Revista Internacional de Ciencia y Tecnologia de la Informacion Geogréfica

International Review of Geographical Information Science and Technology

Pérez-Fernandez, O. A. (2025). Dynamic location-allocation models for shopping centers: integrating
transport and traffic data into the network. GeoFocus, Revista Internacional de Ciencia y Tecnologia de
la Informacion Geografica (Articles), 35, 91-119. https://dx.doi.org/10.21138/GF.867

DYNAMIC LOCATION-ALLOCATION MODELS FOR SHOPPING CENTERS:
INTEGRATING TRANSPORT AND TRAFFIC DATA INTO THE NETWORK

Onel Antonio Pérez Fernandez () &

Escuela de Geografia, Dep.de Cartografia, Universidad de Panam4, Panama City 0824, Panama
Grupo de Investigacion en Ciencia de Datos Geoespaciales (GICDGE), Centro Regional Universitario
deVeraguas, Universidad de Panama, Santiago de Veraguas 8007, Panama
onel.perez(@up.ac.pa

ABSTRACT

Location-allocation models are algorithms for finding the optimal location for services and
facilities. Traditionally, these models were performed statically, without considering changes in network
and service demand throughout the day. We evaluated the impact of incorporating the dynamic
characteristics of public transport service networks and daily traffic behavior on covered demand. For
this purpose, big data sources were used, drawing from Madrid’s public transport data and TomTom’s
traffic history. Dynamic location-allocation models were developed using both data sources to
incorporate the temporal and spatial details of public transportation frequencies and vehicular
congestion. We found that daily variation in public transportation service and congestion affects the
number of people who can visit a shopping center within a specified time frame. This research
incorporates variables from new data sources, thereby enabling the development of dynamic models.
This approach is helpful for decision-making related to the localization of services within cities.
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MODELOS DINAMICOS DE LOCALIZACION Y ASIGNACI(')I}I DE CENTROS
COMERCIALES: INTEGRACION DE DATOS DE TRANSPORTE Y TRAFICO EN LA RED

RESUMEN

Los modelos de localizacion-asignacion son algoritmos utilizados para encontrar la ubicacion
optima de servicios e instalaciones. Tradicionalmente, estos modelos se realizaban de forma estatica sin
tener en cuenta los cambios en la red y la demanda de servicios a lo largo del dia. Nosotros evaluamos
el impacto de incorporar las caracteristicas dinamicas de las redes de servicios de transporte publico y
el comportamiento diario del trafico en la demanda cubierta. Para ello, se utilizaron fuentes de big data,
a partir de los datos de transporte publico de Madrid y del histérico de trafico de TomTom. Se
desarrollaron modelos dindmicos de localizacion-asignacion utilizando ambas fuentes de datos para
incorporar los detalles temporales y espaciales de las frecuencias de transporte ptblico y la congestion
de vehiculos. Descubrimos que la variacion diaria del servicio de transporte publico y de la congestion
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afecta al nimero de personas que pueden visitar un centro comercial en un periodo de tiempo
determinado. Esta investigacion incorpora variables procedentes de nuevas fuentes de datos, lo que
permite desarrollar modelos dinamicos. Este enfoque es util para la toma de decisiones relacionadas con
la localizacion de servicios dentro de las ciudades.

Palabras clave: Modelos de localizacion-asignacion; big data; dinamismo; frecuencia de transporte;
trafico.

1. Introduction

As one of the most dynamic metropolitan areas in Europe, Madrid plays a key role in the European
Union's urban system. Madrid's location as Spain's political, economic, and cultural hub boosts its
tourism and regional growth (Garcia, 2021). The commercial sector is vital for the city's vibrancy. This
includes shopping centers, retail corridors, and business districts. It shapes how people move, how land
users use it, and how consumers behave (Arenas ef al., 2021).

Madrid is one of the top European cities for international tourists and economic activity. Its retail
and business markets are key to local and regional competitiveness (Pagliara et al., 2015). These
commercial facilities are more than places to shop. They are also key factors that impact accessibility,
transport needs, and service fairness in the metro area (Wang & Niu, 2019). It is important to study the
layout of shopping centers. They also want to see how easily people can access them. This is especially
true as we strive to develop urban planning that is more inclusive and centered on proximity.

With the evolution of modern lifestyles, the retail market has experienced remarkable changes,
ranging from small independent stores to large shopping malls (Cheng et al. 2007). These facilities
receive many customers and generate employment and revenue for various businesses within their
facilities. In the metropolitan area of Madrid, there are a wide variety of shopping malls. The ease of
access to such businesses is fundamental to ensuring that many people visit their stores and use their
services. Strategic shopping mall location is crucial for attracting more customers. Therefore,
accessibility by all modes of public and private transportation is a priority. Inadequate location selection
can have long-term negative consequences that can lead to serious financial impact (Graig 1984).
Choosing suitable locations significantly contributes to business success. In addition, it is essential to
consider the presence of competitors in the area.

In this context, Serra & ReVelle (1994) explained that location-allocation models involving
competing facilities include more than one company competing for a shared market; therefore, the
location of a new facility affects not only its captured market share but also that of its competitor. The
problem of locating facilities that share customers with competitors raises the possibility of competition.
Thus, the new facility must compete with existing facilities in the market (Shan ef al. 2019). The
incorporation of other establishments affects the business share and profits of existing establishments
(Lai et al. 2020).The location models of sales points in competition seek the best location for one or
more new centers that compete to maximize the number of customers captured by competitors.

Few studies explicitly consider spatial competition in shopping mall location issues. Hotelling
(1929) laid the groundwork for understanding duopoly competition. He introduced a linear model that
assumes users go to the facility closest to them. The author suggests that consumers do not always pick
the lowest-priced option. This challenges previous beliefs. Demand shifts slowly among competitors.
This occurs due to factors such as location and personal preferences. He applies a basic mathematical
model. This model demonstrates that steady consumer behavior yields a more stable price balance than
past studies have indicated. This simplified framework laid the foundation for more complex
probabilistic models such as Huff’s gravity-based model (1964), which calculates the probability of a
customer visiting a facility based on its attractiveness and its distance from the consumer. Subsequent
studies refined these approaches by incorporating additional variables such as store size, parking
availability, and perceived utility (Nakanishi & Cooper, 1974).
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These competitive location models have been extended to various real-world applications,
including the siting of clothing and furniture stores (Huff, 1964), shopping centers (Drezner et al., 2002),
and hotels (Drezner, 2010). Bell (1998) states that the study provides a broad framework for
understanding how consumers choose stores. It examines fixed and variable shopping costs, the smallest
basket size, and how loyalty, both general and category-specific, affects buying behavior. More recently,
models that maximize shared market potential have been applied to retail contexts, including shopping
malls (Ahmad et al., 2017; Ahmadi & Ghezavati, 2020; Lai et al., 2020), with varying success in
identifying optimal trade-off points between access and exclusivity.

Ahmad et al. (2023) studied shopping mall locations in West Amman, Jordan. They used a
temporal resilience framework with the Network Analyst tool in ArcGIS. This helped them assess travel
times to each mall. The research indicates that the area has an excessive number of shopping malls. This
is due to poor planning. As a result, there are too many stores for the number of people living in the
area. The results suggest that using planning standards from other areas could improve the situation.
This study opens the door for future research on how shopping center locations affect different areas. It
provides valuable insights for urban planners and retail stakeholders (Dong ef al., 2023).

However, despite their theoretical robustness, most of these models rely on static assumptions
about travel time and accessibility. Only a few studies, such as Banerjee et al. (2020), begin to
incorporate temporal data—using GPS records to optimize bike-sharing station locations—but these are
still rare in the context of shopping mall planning. This reveals a notable gap in the integration of
dynamic transport network data, such as real-time congestion or scheduled public transport variation,
into location-allocation models for commercial facilities. Addressing this gap is one of the main
motivations of the present study.

It is important to highlight that so far in the literature review, little research has been found on the
location of shopping centers in which Big Data sources have been used to analyze the dynamism of
transport networks. Therefore, the aim of this study is to analyze the effect of the dynamic component
of the public transport network and congestion on the demand served during the day by the current
shopping centers in Madrid. To achieve this, we used two complementary Big Data sources. The first is
the General Transit Feed Specification (GTFS). It is a standard format that machines can read. GTFS
provides detailed information about public transportation schedules, stop locations, and transit routes.
Many use it to model multimodal transit access. The second source is historical traffic data from
TomTom. This company provides real-time and archived traffic info. They gather data from millions of
GPS devices. This data shows congestion levels and average travel speeds on the road network.

Using the GTFS data, we constructed a public transportation network to simulate population
movement to commercial facilities and services by bus, metro, and other modes. With TomTom data,
we modeled private vehicle movement across the urban road network, incorporating the spatial and
temporal variation in congestion patterns observed throughout the day.

Recently, GTFS (General Transit Feed Specification) data has become common in transport
geography. It helps model public transport accessibility. GTFS gives standard info about transit routes,
stops, schedules, and frequencies. This info helps with detailed time analyses. Researchers such as
Farber et al. (2014), Stepniak & Goliszek (2017), and Karner (2018) have demonstrated that GTFS-
based models effectively highlight accessibility inequalities by simulating travel times at various times
throughout the day. These studies employed metrics such as the Gini index and standard deviation. They
measured accessibility among social groups and urban areas. Other applications, such as those by Liu
etal. (2023,2024) and Braga ef al. (2023), highlight the importance of incorporating variability in public
transport services to more accurately assess accessibility, particularly for vulnerable populations or
during system disruptions.

Despite these advances, most GTFS-based studies have focused on accessibility measurement
rather than facility location. Kotavaara (2018) is one of the few exceptions, using GTFS data to identify
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optimal locations for healthcare services in Finland. GTFS is rarely used in retail location-allocation
models. This presents an opportunity to apply this method to commercial planning.

Simultaneously, TomTom data has emerged as a vital resource for modeling vehicular mobility
and congestion patterns. TomTom uses GPS data from millions of vehicles. This helps create historical
traffic profiles. These profiles show average speeds, travel times, and congestion levels. They provide
insights over time and in different areas. Research conducted by Moya-Gémez & Garcia-Palomares
(2017), Garcia-Palomares et al. (2018), and Dingil ef al. (2018) has employed TomTom data to evaluate
the dynamics of car accessibility, simulate traffic conditions, and benchmark transport performance
across urban landscapes.

Additionally, Pritchard et al. (2019) and Tanveer ef al. (2020) have integrated TomTom data with
General Transit Feed Specification (GTFS) data to investigate multimodal accessibility. TomTom data
is effective for assessing the performance of transportation systems. However, its application to location-
allocation problems in commercial facilities is still in its early stages. Recent work, including that of
Moyano ef al. (2018) and Moya-Gomez ef al. (2024), demonstrates how incorporating congestion data
enhances the realism of spatial planning models. These initiatives highlight the significance of
considering time-dependent travel patterns, particularly when delineating retail service areas within
congested urban environments.

Nevertheless, further research is needed to understand the implications of these patterns on
consumer behavior and facility performance. This study addresses the gap by using TomTom traffic
profiles. It assesses the ease of access to shopping centers in the Madrid metropolitan area. Building on
this literature, our study proposes a novel integration of GTFS and TomTom data into a dynamic
location-allocation model for shopping centers in the Madrid metropolitan area. By considering
temporal variability in both public and private transport networks, we aim to evaluate how accessibility
patterns evolve throughout the day and how they influence the potential demand captured by existing
commercial facilities. The study is guided by the following research questions:

* How do fluctuations in public transport frequency and road congestion throughout the day affect
accessibility to shopping centers?

* To what extent do these dynamic accessibility patterns influence the demand coverage and
market share under competitive conditions?

To explore these questions, we used two dynamic spatial optimization strategies. The maximize
attendance model demonstrated how changes in public transportation and road congestion impact
demand at shopping centers during the day. The maximize shared market model looked at competition.
It demonstrated how demand is spread across current facilities.

The following structure organizes the paper. First, Section 2 presents the research method
undertaken in this study. Section 3 shows our results from the dynamic location-allocation model for
shopping centers in Madrid. In Section 4, we present our findings and conclude the paper by
summarizing our main conclusions.

2. Materials and methods
2.1.Study Area

To conduct this research, Madrid was chosen as the scenario for the empirical application of
location-allocation models. The researchers selected Madrid because of data available to develop the
location-allocation models. In addition, Madrid stands out as a dynamic city, with a metropolitan area
abundant in different services and facilities. It is a multicultural city that offers a conducive environment
for the location of services and businesses. The Madrid metropolitan area is located in central Spain and
is part of the Community of Madrid, the country's capital city. Various global classifications and
rankings reflect the importance of the Madrid metropolitan area. According to the Global Power Cities
Index 2019, which ranks 48 cities in the world by their magnetism in attracting people, capital, and
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businesses, Madrid is the thirteenth city in the world and the fifth in Europe, ranking leading London,
New York, Tokyo, and Paris. The metropolitan area of Madrid has the largest population and provides
services in Spain. It includes 28 municipalities (Figure 1) in which approximately 6,780,000 inhabitants
live according to the 2020 Population Register. It is the main metropolitan area in Spain, surpassing
Barcelona, where 5.5 million people live (Ayuntamiento de Madrid 2020).

The main communication infrastructures in the metropolis have converged, positioning it as the
primary logistics hub in Spain and Southern Europe. There is a significant network of highways and
roads, including both radial and ring roads. It forms the core of national railway transport and facilitates
effective connections with other autonomous communities and Europe.

>z

Colmenar
Viejo

TresCantos
San
Sebastian
delosReyes
Rozasde
Madrid,
Las

Alcobendas

Alcalade
Henares

Torrejon
Majadahonda ! j
: o deArdoz
Boadilla Pozuelode
delMonte Alarcén

Brunete

VillaviciosadeOddn  Alcorcén

Rivas-
Leganés Vaciamadrid
Area metropolitana Méstoles

Corona metropolitana: Este G

Corona metropolitana: Norte

Corona metropolitana: Oeste

Corona metropolitana: Sur Sl

Madrid: Almendra Central

Madrid: Periferia Este

Madrid: Periferia Noroeste

Madrid: Penferi_a Sur (a) ©
B Area de estudio

Comunidad de Madrid r T . . . . - . |
Comunidades autonomas 0 500 1.000 2.000 Km

Fuenlabrada (b)

Pinto

Figure 1. Study area. (a) Metropolitan area; (b) Community of Madrid; (c) Spain.
2.2. Data for location-allocation models
2.2.1. Public transportation networks and TomTom traffic history

The dynamic component was incorporated into the street network downloaded from the National
Geographic Information Center in Shapefile format. The GTFS files were acquired from the Madrid
Regional Transport Consortium (CRTM) data portal. Using these data, a network was constructed to
simulate the population movement by public transportation (Figures 2-3). For the design of Location-
Allocation Models (LAM) incorporating dynamism into the public transportation network. This network
was built using the DisplayGTFS, AddGTFS, and Network Analyst tools in ArcMap 10.6 software from
ESRI (Environmental Systems Research Institute).

Additionally, historical traffic profiles (the Historical Speed Profiles product) collected by
TomTom were used in the design of the network that simulates private car travel (Figures 4-5).
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Figure 2. Public transportation travel frequencies on Thursdays. Frequencies at (a)
8:00 h; (b) 10:00 h; (c) 12:00 h; (d) 14:00 h; (e) 16:00 h; (f) 18:00 h; (g) 20:00 h.
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Figure 3. Public transportation travel frequencies on Saturdays. Frequencies at (a) 8:00 h;
(b) 10:00 h; (c) 12:00 h; (d) 14:00 h; (e) 16:00 h; (f) 18:00 h; (g) 20:00 h.
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Figure 4. Thursday traffic behavior based on TomTom data. Traffic at (a) 8:00 h; (b)
10:00 h; (c) 12:00 h; (d) 14:00 h; (e) 16:00 h; (f) 18:00 h; (g) 20:00 h.
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Figure 5. Saturday traffic behavior based on TomTom data. Traffic at (a) 8:00 h; (b)
10:00 h; (c) 12:00 h; (d) 14:00 h; (e) 16:00 h; (f) 18:00 h; (g) 20:00 h.

Based on the two products managed by TomTom (MultiNet® and Historical Speed Profile), the
private transportation network used to calculate LAM with a dynamic component during the day is
constructed. The established parameters are arc connections through endpoints, prohibited turns, traffic
directions, and section hierarchy.
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The following impedances are defined:

 Average travel time (times with average speeds),

* Kilometers (length of network arcs),

* Minutes (times obtained using the speeds calculated in the MultiNet product), and

* Travel Time (variation of arc speeds).

Both networks were used to execute the location-allocation model (LAM), allowing for the
analysis of the mobility patterns of demand by day and hour.

2.2.2. Census Tracks and Shopping Centers

To execute LAM, census data at the census section level downloaded from the Continuous
Population Register of 2020 and available on the Spanish National Institute of Statistics (INE) server
were used. The cartography of the census sections downloaded from the Madrid Community data server
was used to georeferencing the population data. Subsequently, the centroid of each census section was
calculated and used as the demand point for the service. In the location models, a layer with the
coordinates of the shopping centers was employed as the supply point. Both layers were downloaded in
Shapefile format from the Madrid Community open data portal. We worked with 91 centers located in
the metropolitan area of Madrid. This file contains geographic coordinates, shopping center names, and
gross leasable areas.

2.3. Methods

In the introduction, this article discusses various theoretical and practical approaches to
developing location-allocation models (LAM). These approaches have resulted in diverse solutions,
including maximizing attention and maximizing market share in terms of time or distance for the target
population. However, most location-allocation models to date have not considered the temporal
dynamism of the transport network used for model development. This oversight stems from difficulties
in obtaining high temporal-resolution data, which is a limitation that has been fortunately overcome with
the advent of big data sources.

In this context, this study considers the incorporation of dynamism in the network input to LAM.
With the emergence of new data sources, such as big data, researchers have investigated the
implementation of LAM at different times on Thursdays and Saturdays. Using data from both public
and private transportation networks, this study analyzed the impact of bus and private car travel on
demand throughout the day.

2.3.1. Selection of Candidates and Demand

Current shopping centers in the metropolitan area of Madrid were used as required facilities, and
their gross leasable area (GLA) was used as an attraction parameter. Meanwhile, demand points were
obtained from centroids corresponding to census sections. The Features to Point tool in ArcGIS Pro 3.2
extracted centroids in census sections. These sections include a field containing the population used to
weigh the demand.

2.3.2. Development of dynamic location-allocation model

After establishing public and private transportation networks and identifying candidate and
demand sites, we implemented location-allocation models using the location-allocation module of
ArcMap 10.6 (ESRI) Network Analyst. This study analyses the impact of changes in public
transportation frequencies and congestion on the demand served by existing shopping centers in the
Madrid metropolitan area. This study implemented solutions that maximize assistance and maximize
market share.

100



Dynamic location-allocation models for shopping centers: integrating transport and traffic data into the
network

A) Maximize Attendance solution

Existing shopping centers in the Madrid metropolitan area served as required facilities, with their
gross leasable area (GLA) as a critical attraction parameter. Demand points were derived from the
respective centroids of the census tracts, each containing the population data used to gauge demand. A
travel time threshold of 10 minutes from demand points to candidate sites was applied to define service
areas. This value is grounded in the empirical findings of Gutiérrez Puebla & Chicharro Fernandez
(2003), who reported an average access time of 11 minutes to selected shopping centers in the Madrid
metropolitan area. Additionally, using a 10-minute travel time threshold is a well-established method in
facility location planning. It ensures that facilities are optimally positioned to efficiently serve demand
points, thereby enhancing accessibility and service coverage. This approach is widely supported by
optimization models and practical applications in urban service planning, demonstrating its
effectiveness in improving spatial coverage and minimizing response times (Yildiz & Ekinci, 2017).
The maximize attendance strategy prioritizes facilities by assigning maximum demand weight,
assuming that demand decreases with distance from candidate sites to potential demand points.
According to Alonso (2016), demand is maximized within a certain distance threshold, emphasizing
proximity to supply points. Maximizing attendance suggests that the further people travel to access a
facility, the less likely they are to use it (Erfani et al. 2018, Rahman et al. 2021). The equation used is
as follows: (Zhang et al. 2024).

m n
Maximizar Z = Z Z P (S — dl-j)xl-j
i=1 j=i
Where i = set of demand locations; j = set of candidate locations; p; = population to be served
at the demand site i; § = distance, d;; = the shorest distance from a site i fo site j; x;; = decision
variable that will take the value of 1 if the demand i is covered by the candidate site j and 0 otherwise.

We applied the maximize attendance strategy on two specific days (Thursday and Saturday)
across various time slots: 8:00 h, 10:00 h, 12:00 h, 14:00 h, 16:00 h, 18:00 h, and 20:00 h, chosen to
represent typical weekdays and weekends. Additionally, we examined off-peak hours (10:00 h, 12:00 h,
14:00 h, 16:00 h, 20:00 h) to assess network behavior when public transportation frequencies and road
congestion are low. This hour allowed us to evaluate the impact of different transportation frequencies
and congestion on shopping center attendance throughout the day.

B) Maximize market Share solution

Maximizing market share solution is commonly used to identify facilities where competitor
characteristics must be considered (Banerjee et al. 2020, Drezner 2011) In this case, the maximize
market share solution is used, maintaining parameters similar to those of the previous model but
adjusting the gross leasable area of each shopping center as the attraction criterion.

The equation used is as follows:

m m
.. a;
Maximizar Z = E a;y; + E (?) Z;

i=1 i=1
Subject to:
yi < Z X; i={12,..,m}sj={12,..,n} (1)
JEN;
z; < Z Xk i={12,..,m} 2
KEK;
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Z,y; <1 i={12,..,m} (3)

- 0

jE€JoVIN

Where i = demand sites that are available for capture; j = candidate sites for facilities; J, = set of
occupied facilities; J,; = set of non-occupied facilities and are eligible; a; = population in node i; y; =
{1 if node i gets a new service within S; that is closer to 1, 0 otherwise; x; 1 if the facility is located in
J» Ni = {j€]y |d;j<S; } set of facilities that are strictly closer to node i than to its nearest facility; d;; =
shortest distance between site [ and site j; S; = distance from node i to the nearest site j; K; = the set of
occupied and unoccupied facilities located at the same distance from i as the nearest facility i; z;= {1 if
node i es captured by a service located within K;; 0 otherwise.

If node i is captured by a facility located within k;, meaning the facility currently closest to i or a
facility whose distance from i is equal to the distance from i to the currently closest facility, then z is 1
if it is captured and doubly equipped.

Constraints (1) form the basis of the formulation. They state that a demand point is not captured
by a new facility unless the facility is located closer to i than its currently closest facility. Constraints
(2) indicate that a demand node i is captured but doubly served z = 1 only if a new facility is located in
a position k € K, the set of positions, equally distant from i as the currently closest provider to node i.
Constraints (3) prevents a demand site from being captured in more than one location. Constraints (4)
limit the number of new facilities. This is expressed as follows: if the travel cost from the demand point
to the site of the incoming competitor is less than the current cost, the new competing establishment
captures the demand. If the travel cost is the same, the demand is shared between the two (the new and
the preexisting establishment). Finally, if the travel cost of the nearest site to the incoming competitor
exceeds the travel cost of the competitor, the competitor does not capture the demand (Bosque ef al.
2012). The model described in this section has been applied by various authors to locate retail sites
(Saidani et al. 2012, Suarez-Vega et al. 2012), shopping centers (Ahmad et al. 2017), and bike stations
(Banerjee et al. 2020), among others.

3. Results

This section summarizes the LAM results for shopping centers in Madrid’s metropolitan area.
First, the results obtained when applying the solution to maximize attendance are presented.Then, the
outcomes derived from the solution to maximize market share are shown.

3.1. Demand Covered by the Solution Maximize Attendance

Table 1 lists the demand covered by the network of shopping centers in the metropolitan area of
Madrid across various time slots using the GTFS public transportation network. It was observed that the
allocated population barely reached 5 % on Thursdays and Saturdays within a 10 min travel time. The
data indicate that shopping centers are not covered by public transportation because nearly 95 % of the
population still needs to be allocated to any shopping center. The results show minimal differences
between the studied days and time slots. To explain the changes in the covered population across time
slots (Table 1), we utilized the 18:00 h time slot as a reference for comparison. We selected this time
slot based on Google Maps graphs showing peak visiting hours at shopping centers. Analyzing
Thursdays, a slight decrease was noted across most time slots, with the lowest value at 14:00 h
representing 1.8 %. Conversely, Saturdays increased in some time slots, with the highest value again at
14:00 h (1.3 %).
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Table 1. Population covered by shopping centers according to GTFS.

Thursday 10 min Saturdays 10 min
Total % Inc. Inc% Total % Inc. Inc%

8:00 296 797 5.1 3185 1.1 276 739 48  -6305 -22
10:00 292 228 5.1 -1385  -0.5 282 897 4.9 -147  -0.1
12:00 293 645 5.1 32 0.0 280014 48 3031 -1.1
14:00 288 254 50 -5358 -1.8 286 619 5.0 3575 1.3
16:00 290 517 50  -309% -1.1 286474 5.0 3429 1.2
18:00* 293 613 5.1 0.000 0.0 283 044 4.9 0.000 0.0
20:00 291 766 50 -1847 -0.6 284 812 4.9 1767 0.6

*Reference hour. Inc = Increment. min = minutes.

Hours

The low values in the allocated population and the minor differences in the data may be related
to the distance of shopping centers from the main public transportation routes and the frequent
disconnects between the centers and the urban fabric (Gutiérrez Puebla & Chicharro Fernandez, 2003).

Error! No s'ha trobat I'origen de la referéncia. depicts the demand distribution profiles on T
hursdays and Saturdays across different time slots using the GTFS network. The horizontal axis
represents the various studied time slots, whereas the vertical axis indicates the population assigned to
shopping centers. It is inferred that on Thursdays, there is greater demand for coverage in the early hours
of the day (reflecting a higher public transportation frequency, although shopping centers are closed at
8:00). Coverage then declines at 10:00, recovering at 12:00 and 18:00, coinciding with popular shopping
hours. On Saturdays, coverage is lower in the early hours (due to lower public transportation frequency),
with the highest values at 14:00, 16:00, and 18:00. These hours correspond to when the Madrid
population typically visits shopping centers on weekends. Overall, when using public transportation
(GTEFS), Thursdays witness a higher population allocation to shopping centers than Saturdays.
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Figure 6. Population covered by shopping centers according to GTFS network.

Exploring the results obtained using TomTom (Table 2), it is observed that the covered demand
on Thursdays and Saturdays exceeds 40 % across all studied hours. On Thursdays, at 14:00, shopping
centers cover 45.2 % of the population. This higher percentage was associated with lower congestion
during this hour. On Saturdays, the best coverage is at 8:00, with approximately 50 % of the population
allocated.
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The weekend results were due to reduced traffic congestion during the early hours on Saturdays.
Moreover, the average percentage of the allocated population on Thursdays was 43.5 %, whereas on
Saturdays, the average was 47.1 %. Comparing the averages for both days shows that Saturdays attract
3.6 % more people (211 860 customers).

Table 2. Population covered by shopping centers according to TomTom.
Thursday 10 min Saturdays 10 min

Total % *Inc. Inc% Total % Inc. Inc%

8:00 2545710 44.0 187903 8.0 2854740 49.4 147822 5.5
10:00 2561573 443 203766 8.6 2792994 48.3 86076 3.2
12:00 2511 807 43.5 154000 6.5 2723667 47.1 16749 0.6
14:00 2609 816 452 252008 10.7 2768109 479 61192 23
16:00 2607 240 45.1 249432 10.6 2826189 48.9 119271 4.4
18:00 2 357 807 40.8 0.000 0.0 2706918 46.8 0.000 0.0
20:00 2508 156 43.4 150349 6.4 2693500 46.6 -13418  -0.5

Hours

To compare the evolution of population coverage throughout the day (Table 2), the 18:00 time
slot was selected as the reference value. It is observed that on Thursdays, 14:00 and 16:00, the most
significant increases in the allocated population (10.7 % and 10.6 %, respectively). Focusing on
Saturday data, a more significant percentage increase (5.5 % in the allocated population) occurred at
8:00. Additionally, the 16:00 h record a 4 % increase in coverage, an afternoon time when people
frequently visit shopping centers on weekends.

Figure 7 illustrates the population profiles assigned on Thursdays and Saturdays across different
time slots using the TomTom network.
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Figure 7. Population covered by shopping centers according to TomTom network.

Saturdays exhibit higher coverage than Thursdays. On Saturdays, the highest population coverage
occurs at 8:00 and 16:00; at 18:00, congestion increases, resulting in a decrease in the population
allocated to shopping centers within that 10 min time slot. Conversely, notable values were observed on
Thursdays at 14:00 and 16:00 (Error! No s'ha trobat l'origen de la referéncia.), indicating lower v
ehicle traffic during these time slots. Meanwhile, a decrease was evident at 18:00, a time of significant
traffic volume in Madrid, according to TomTom traffic data. Significant differences in population
coverage were observed between GTFS and TomTom. Note that with public transportation, the weekend
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coverage of demand is lower. With the TomTom network, the opposite occurs, as Saturdays experience
less vehicular congestion, leading to increased demand compared with Thursdays (Error! No és una
autoreferéncia de marcador valida.). Furthermore, the population can leverage the low vehicular
congestion on weekends, especially at 14:00 and 16:00, to visit shopping centers for shopping or dining.

Table 3. Differences in the population covered between Saturday and Thursday (Saturday-

Thursday).
GTFS TomTom
Hours
Total % Total %

8:00 -20 058 -6.8 309 030 12.1
10:00 -9 331 -3.2 231421 9.0
12:00 -13 631 -4.6 211 860 8.4
14:00 -1 635 -0.6 158 294 6.1
16:00 -4 043 -1.4 218 949 8.4
18:00 -10 568 -3.6 349 111 14.8
20:00 -6 954 2.4 185 344 7.4

Maps (Figure 1) depict the population coverage results by shopping centers across different time
slots and their percentage changes. These percentages are derived by comparing the demand during the
18:00 time slot and analyzing the percentage increase or decrease in hourly allocations on Thursdays
and Saturdays using both networks.

For improved visualization, only 18:00 h and 12:00 h on Saturdays were considered. The size of
the circles indicates the population assigned to each shopping center at 18:00 h , while red tones indicate
changes between 12:00 h and 18:00 h.

Figure 1 reveals that when using the GTFS network, most shopping centers exhibit changes
compared with the reference hour (18:00 h). The 18:00 h time slot showcases some shopping centers
with significant population volumes, such as Dos de Mayo, Arenal 9, El Jardin de Serrano. On
Saturdays, at noon, many shopping centers experience losses in captured demand compared with
18:00 h, especially those located in the peripheral and downtown areas of the metropolitan area.
Examples of shopping centers affected by variations in public transportation frequency at noon include
Ecomostoles Centro, Arenal 9, and El Jardin de Serrano.

On Saturdays, shopping centers that achieve higher population allocation are Dos de Mayo,
Arenal 9, Ecomostoles Centro, El Jardin de Serrano, and Alcala Norte. This behavior may be related to
good connectivity with public transportation (higher frequency of trips and routes) between demand
locations and shopping centers.
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Figure 1. Population covered and percentage change between 12:00 h and 18:00 h h
(GTFS). (a) Saturday at 18:00 h; (b) Saturday at 12:00 h.

The demand behavior of private transportation (TomTom network) was also analyzed, again using
the 18:00 h time slot as a reference, to study the percentage change in covered demand during other time
slots. Figure 2 shows that on Saturdays, at noon, many shopping centers record favorable percentage
variations. These percentages stem from a higher allocated population on weekends and during times
when people visit shopping centers more frequently. Moreover, the positioning of shopping centers,
typically outside central areas, renders them more susceptible to weekday traffic congestion during the
afternoon peak hours.

Regarding covered demand, the most favored shopping centers in both time slots are Los Angeles,
Plaza Aluche, Alcampo-Moratalaz, La Ermita, and Plaza Rio (Figure 2). These commercial centers are
situated adjacent to densely populated districts, including Arganzuela, Usera, Retiro, Moratalaz,
Villaverde, and Carabanchel. Note that these shopping centers, with a higher allocated population,
exhibit the following characteristics: they are located in the periphery of the Central Almendra of the
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Municipality of Madrid, close to the M30 highway, and distant from areas of high traffic congestion in
the Centro and Salamanca districts. These characteristics may be related to the extensive coverage of
these shopping centers on Saturdays at 18:00 h, which coincides with a time when a considerable portion
of the population visits Madrid shopping centers.
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Figure 2. Population covered and percentage change between 12:00 h and 18:00 h (TomTom).
(a) Saturday at 18:00 h; (b) Saturday at 12:00 h.

Figure 3 presents the average demand per day, hour, and network. Comparing GTFS with
TomTom, differences in average population coverage among shopping centers were evident. For
instance, regarding public transportation, a higher proportion of people traveled on Thursdays than on
Saturdays, although the average demand remained similar across all time slots. Conversely, with
TomTom, the opposite occurs, as Saturdays allocate more population than Thursdays, covering an
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average of almost 30 000 inhabitants at different times. Comparing the results obtained using both
networks, we find that the average population allocated to shopping centers was significantly more likely
to use private transportation.
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Figure 3. Average population covered according to hours.
3.2. Population Allocated to Shopping Centers Using the Maximize Market Share Solution

The Maximize Market Share solution was employed to evaluate the impact of changes in public
transportation frequencies and private transportation congestion on the demand share assigned to
shopping centers in the presence of competitors.

The proposed solution maximizes the market share of a given set of facilities. The total market
share is the sum of all customer weights for valid demand points. The market share solution is a gravity
model that allocates demand to each location using information about the importance (weight) of the
company's facilities and the weight of competitors’ facilities (Environmental Systems Research
Institute). According to this solution, the population of a census tract is not assigned to a single center;
instead, the population of the tracts is distributed among nearby centers based on distance and size.

The market share solution was developed using existing shopping centers (mandatory candidates)
and the centroids of census tracts in Madrid (demand). The location-allocation model was implemented
using public transportation (GTFS) and private transportation (TomTom) networks.

Once again, dynamic scenarios were developed by selecting two days of the week (Thursdays and
Saturdays) and various time slots (8:00 h, 10:00 h, 12:00 h, 14:00 h, 16:00 h, 18:00 h, 20:00 h). The
impedance parameter for a 10 min travel time was established. The attraction weighting for shopping
centers was the Gross Leasable Area (GLA), which is a standard indicator of shopping center size, while
the population of each census tract determined the population demand weight. Table summarizes the
model results obtained using the GTFS network. The meaning of each column in the table is explained
for clarity. The first column displays the hours used to run the location-allocation models. The second
and sixth columns contain the population assigned on Thursdays and Saturdays. The third and seventh
columns show the percentage of the assigned population relative to the total population obtained from
the 2020 census (5 779 974 inhabitants). Finally, the fourth, fifth, eighth, and ninth columns indicate the
absolute and percentage increases compared with the reference hour (18 h).

The assigned population was higher on Thursdays than on Saturdays. Hours 16:00 h and 20:00 h
were observed to register lower values than the reference hour, whereas the remaining hours recorded
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higher demand. Focusing on Saturdays, the percentage increase for all hours was negative, except for
14 h.

Table 4. Population allocated to shopping centers at different times of the day using the GTFS

network.
Thursday 10 min Saturdays 10 min

Hours
Total % Inc. Inc% Total % Inc. Inc%
8:00 1129561 19.5 87119 8.4 972942 16.8 -35650 -3.5
10:00 1087069 18.8 44627 43 958090 16.6 -50502 -5.0
12:00 1071123 185 28681 2.8 937018 162 -71574 -7.1
14:00 1050334 182 7892 0.8 1033056 179 24464 24
16:00 1029206 17.8 -13236 -1.3 981320 17.0 27272 -2.7
18:00% 1042442 180 0.000 0.0 1008592 174 0.000 0.0
20:00 1007033 174 -35409 -34 996 535 17.2 -12057 -1.2

However, using the TomTom network yielded different results. First, a demand above 92 % was
assigned on both days; furthermore, on Thursdays, there was an increase in all hours compared to the
reference hour (18 h) whereas, on Saturdays, there were few changes between the different hours studied
(Table ). These few changes can be partly explained by the fact that weekend activities in the city slow
down, resulting in smooth traffic flow during the day.

Table 5. Population allocated to shopping centers at different times of the day using the
TomTom network.

Thursday 10 min Saturdays 10 min
Total % Inc. Inc% Total % Inc. Inc%

Hours

8:00 5453046 943 117155 22 5548 412 96.0 27820 0.5
10:00 5466 652 94.6 130761 2.5 5538 004 95.8 17412 0.3
12:00 5422 638 93.8 86747 1.6 5529474 95.7 8882 0.2
14:00 5484 225 94.9 148334 2.8 5537742 95.8 17150 0.3
16:00 5485009 94.9 149118 2.8 5545 828 95.9 25236 0.5
18:00 5335891 92.3 0.000 0.0 5520 592 95.5 0.000 0.0
20:00 5433244 94.0 97 353 1.8 5508 003 95.3 -12589  -0.2

Table summarizes the differences between the days and networks analyzed. Public transportation
is less efficient on Saturdays than on Thursdays, as evidenced by the negative percentages at various
hours.

On average, weekends leave about 7 % fewer people unassigned compared with Thursdays, with
the most significant impact being at 8 o'clock, with a decrease of around 14 %. The opposite occurs with
the private transportation network, which provides excellent coverage on Saturdays. On average, with
the private transportation network, approximately 92,478 more inhabitants (2 %) are served on
Saturdays than on Thursdays. The most significant impact was recorded at 18 h, which coincides with
the time when Madrid residents typically visit shopping centers on weekends.
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Table 6. Differences between the allocated population (Saturday-Thursday).

H GTFS TomTom

ours Total % Total %
8:00 -156 619 -13.9 95 366 1.7
10:00 -128 979 -11.9 71352 1.3
12:00 -134 105 -12.5 106 836 2.0
14:00 -17 278 -1.6 53 517 1.0
16:00 -47 886 -4.7 60 819 1.1
18:00 -33 850 3.2 184 701 35
20:00 -10 498 1.0 74759 1.4

Figure 4 shows the model results when using the GTFS and TomTom networks. The brown stars
represent the locations of actual shopping centers; the brown squares indicate shopping centers with no
assigned demand. The gray points refer to unassigned locations. In contrast, brown lines indicate
shopping centers where demand is moving.

On both days (Thursdays and Saturdays), many census tracts (gray points) were unassigned to
shopping centers, especially in the central part of the study area. In addition, shopping centers should
obtain assigned demand locations (brown squares) (Figure 4-12). Furthermore, using the TomTom
network (private transportation) provides better coverage than that obtained using public transportation.
However, certain uncovered areas (gray points) were observed, especially at 18 h on Thursdays (Figure
13-14), as it became difficult to reach a shopping center within 10 min. This behavior may be related to
the fact that 18 h is a time of congestion in Madrid. When comparing Thursdays and Saturdays, it is
observed that the number of uncovered sites decreased on Saturdays at all hours due to a more significant
population assignment.

When comparing Thursdays and Saturdays, it is observed that unassigned sections decrease
during the weekend in all time slots due to a more significant population assignment on weekends
(Figures 13-14).

Comparing the results obtained with the solutions of maximizing market share and maximizing
attendance, it is found that the dynamism of GTFS and TomTom networks has a significant impact.
Figure 8 summarizes the assignment percentages obtained using both solutions. The vertical axis
represents the proportion of the assigned populations. The horizontal axis shows the number of hours
used in model development. At the same time, the colors of the bars represent the days and networks
used.

It is observed that with the solution of maximizing market share, much more demand is assigned
than with the solution of maximizing attendance. For example, with the GTFS network, an average of
12 % more population was assigned for both days. Compared to the TomTom network, this rose to
nearly 50 %. It is also observed that with the attendance maximization solution, values exceeding 40 %
of the assigned population are reached in all time slots with the TomTom network. Meanwhile, with the
shared market maximization solution, this figure exceeds 90 %.

The differences between the results obtained using the two solutions have several possible
explanations. First, the objective functions of the maximizing attendance algorithm and the market share
maximization solution are entirely different. In particular, the attendance maximization solution assigns
the most significant population at a given time. The assigned population decreased as the distance
between facilities and user locations increased. In addition, the solution assigns a demand to a single
shopping center (the closest one).
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Figure 4. Details of unallocated census tracts for Thursdays using the GTFS network. (a) at
18:00 h; (b) at 16:00 h; (c) at 12:00 h.
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Figure 6. Details of unallocated census tracts for Thursdays using TomTom network. (a) at
18:00 h; (b) at 16:00 h; (c) at 12:00 h.
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Figure 8. Percentage of the allocated population according to the solution used (GTFS network
and TomTom).

In contrast, the shared market maximization solution uses another variable that influences model
results. To develop the proposed solution, all possible information about competitors is required. For
example, in this study, the gross leasable area of each shopping center was used (a variable commonly
used in models with competitors) to attract demand points. Furthermore, a demand point within the
established time threshold is assigned, in its entirety, to one or more shopping centers. At the same time,
the population is assigned proportionally to the attractiveness of each shopping center.

Second, the impact of public and private transportation networks is also notable. The public
transportation network may influence the results, mainly because of the different travel frequencies
during the day. The attendance maximization solution algorithm affects the percentage of assigned
populations because only a portion of the demand is distributed to a shopping center. In contrast, a
shared market maximization solution distributes the population among several establishments. On the
other hand, with a private transportation network, one has more freedom to visit shopping centers. The
attendance maximization solution was more affected by vehicle congestion because the demand was
allocated to the nearest shopping center. In contrast, a shared market maximization solution can be
allocated to one or more centers.

4. Discussion

This study aimed to evaluate how dynamic transport conditions, specifically public transit
frequency and road congestion, affect the demand coverage of shopping centers in the Madrid
metropolitan area. We created two location-allocation models. One model focuses on maximizing
attendance. The other aims to maximize the shared market. Both use dynamic networks from GTFS and
TomTom Big Data sources. These models allowed us to simulate real-world variations in accessibility
based on time of day and mode of transport.

The results reveal that demand captured by shopping centers is susceptible to changes in network
conditions. For instance, in the GTFS-based model, coverage was significantly higher on weekdays than
on weekends due to more frequent service schedules. The TomTom-based model had better coverage
on weekends. Lower congestion made it easier for vehicles to access the area. In both cases, network
dynamics resulted in significant differences in spatial coverage. This shows that static models might not
accurately reflect service reach and market competition.

These findings connect with new research on accessibility that considers time changes (e.g., Braga
et al., 2023; Moya-Goémez & Garcia-Palomares, 2017). They also expand the study to the less explored
area of shopping mall location planning. Our approach differs from earlier studies that focused on
average travel times or static networks (Ahmad et al., 2017; Ahmadi & Ghezavati, 2020). We focus on
how accessibility varies over time and among different users.
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From a practical standpoint, the use of dynamic transport networks enables commercial planners
to adjust operations in response to temporal demand shifts. Staff allocation, business hours, or
promotional campaigns could be optimized based on hourly accessibility patterns. Additionally, this
method can be applied to other urban services, such as pharmacies and restaurants. It can work in cities
that have similar data systems.

Despite its contributions, the study has limitations. The models assume homogeneity in consumer
behavior and do not yet integrate socio-demographic or behavioral attributes. Data limitations,
especially with proprietary Big Data sources like TomTom, create challenges. These challenges include
access issues, interoperability problems, and processing needs. Moreover, the models do not currently
account for external factors such as pricing strategies, land-use regulations, or commercial leasing
dynamics.

Future research could explore the integration of consumer data (e.g., transaction records, foot
traffic counts) to enhance demand modeling. Incorporating real-time data streams or comparing
performance across different traffic datasets (e.g., HERE, Waze) could also provide new insights.
Additionally, examining the relationship between flexible business hours and changing accessibility
patterns is a new area of research that has significant policy implications.

In conclusion, this study demonstrates that incorporating time factors into location-allocation
models enhances their realism. It also enhances their usefulness in making decisions for commercial
planning. Utilizing GTFS and TomTom data enables us to comprehend the intricate nature of urban
systems. This approach also builds a solid base for future research on dynamic service accessibility.
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