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ABSTRACT 

Location-allocation models are algorithms for finding the optimal location for services and 

facilities. Traditionally, these models were performed statically, without considering changes in network 

and service demand throughout the day. We evaluated the impact of incorporating the dynamic 

characteristics of public transport service networks and daily traffic behavior on covered demand. For 

this purpose, big data sources were used, drawing from Madrid’s public transport data and TomTom’s 

traffic history. Dynamic location-allocation models were developed using both data sources to 

incorporate the temporal and spatial details of public transportation frequencies and vehicular 

congestion. We found that daily variation in public transportation service and congestion affects the 

number of people who can visit a shopping center within a specified time frame. This research 

incorporates variables from new data sources, thereby enabling the development of dynamic models. 

This approach is helpful for decision-making related to the localization of services within cities. 

Keywords: Location-allocation models; big data; dynamic; transport frequency; traffic. 

 

MODELOS DINÁMICOS DE LOCALIZACIÓN Y ASIGNACIÓN DE CENTROS 

COMERCIALES: INTEGRACIÓN DE DATOS DE TRANSPORTE Y TRÁFICO EN LA RED 

RESUMEN 

Los modelos de localización-asignación son algoritmos utilizados para encontrar la ubicación 

óptima de servicios e instalaciones. Tradicionalmente, estos modelos se realizaban de forma estática sin 

tener en cuenta los cambios en la red y la demanda de servicios a lo largo del día. Nosotros evaluamos 

el impacto de incorporar las características dinámicas de las redes de servicios de transporte público y 

el comportamiento diario del tráfico en la demanda cubierta. Para ello, se utilizaron fuentes de big data, 

a partir de los datos de transporte público de Madrid y del histórico de tráfico de TomTom. Se 

desarrollaron modelos dinámicos de localización-asignación utilizando ambas fuentes de datos para 

incorporar los detalles temporales y espaciales de las frecuencias de transporte público y la congestión 

de vehículos. Descubrimos que la variación diaria del servicio de transporte público y de la congestión 
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afecta al número de personas que pueden visitar un centro comercial en un periodo de tiempo 

determinado. Esta investigación incorpora variables procedentes de nuevas fuentes de datos, lo que 

permite desarrollar modelos dinámicos. Este enfoque es útil para la toma de decisiones relacionadas con 

la localización de servicios dentro de las ciudades. 

Palabras clave: Modelos de localización-asignación; big data; dinamismo; frecuencia de transporte; 

tráfico. 

 

1. Introduction 

As one of the most dynamic metropolitan areas in Europe, Madrid plays a key role in the European 

Union's urban system. Madrid's location as Spain's political, economic, and cultural hub boosts its 

tourism and regional growth (García, 2021). The commercial sector is vital for the city's vibrancy. This 

includes shopping centers, retail corridors, and business districts. It shapes how people move, how land 

users use it, and how consumers behave (Arenas et al., 2021). 

Madrid is one of the top European cities for international tourists and economic activity. Its retail 

and business markets are key to local and regional competitiveness (Pagliara et al., 2015). These 

commercial facilities are more than places to shop. They are also key factors that impact accessibility, 

transport needs, and service fairness in the metro area (Wang & Niu, 2019). It is important to study the 

layout of shopping centers. They also want to see how easily people can access them. This is especially 

true as we strive to develop urban planning that is more inclusive and centered on proximity. 

With the evolution of modern lifestyles, the retail market has experienced remarkable changes, 

ranging from small independent stores to large shopping malls (Cheng et al. 2007). These facilities 

receive many customers and generate employment and revenue for various businesses within their 

facilities. In the metropolitan area of Madrid, there are a wide variety of shopping malls. The ease of 

access to such businesses is fundamental to ensuring that many people visit their stores and use their 

services. Strategic shopping mall location is crucial for attracting more customers. Therefore, 

accessibility by all modes of public and private transportation is a priority. Inadequate location selection 

can have long-term negative consequences that can lead to serious financial impact (Graig 1984). 

Choosing suitable locations significantly contributes to business success. In addition, it is essential to 

consider the presence of competitors in the area. 

In this context, Serra & ReVelle (1994) explained that location-allocation models involving 

competing facilities include more than one company competing for a shared market; therefore, the 

location of a new facility affects not only its captured market share but also that of its competitor. The 

problem of locating facilities that share customers with competitors raises the possibility of competition. 

Thus, the new facility must compete with existing facilities in the market (Shan et al. 2019). The 

incorporation of other establishments affects the business share and profits of existing establishments 

(Lai et al. 2020).The location models of sales points in competition seek the best location for one or 

more new centers that compete to maximize the number of customers captured by competitors. 

Few studies explicitly consider spatial competition in shopping mall location issues. Hotelling 

(1929) laid the groundwork for understanding duopoly competition. He introduced a linear model that 

assumes users go to the facility closest to them. The author suggests that consumers do not always pick 

the lowest-priced option. This challenges previous beliefs. Demand shifts slowly among competitors. 

This occurs due to factors such as location and personal preferences. He applies a basic mathematical 

model. This model demonstrates that steady consumer behavior yields a more stable price balance than 

past studies have indicated. This simplified framework laid the foundation for more complex 

probabilistic models such as Huff’s gravity-based model (1964), which calculates the probability of a 

customer visiting a facility based on its attractiveness and its distance from the consumer. Subsequent 

studies refined these approaches by incorporating additional variables such as store size, parking 

availability, and perceived utility (Nakanishi & Cooper, 1974). 
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These competitive location models have been extended to various real-world applications, 

including the siting of clothing and furniture stores (Huff, 1964), shopping centers (Drezner et al., 2002), 

and hotels (Drezner, 2010).  Bell (1998) states that the study provides a broad framework for 

understanding how consumers choose stores. It examines fixed and variable shopping costs, the smallest 

basket size, and how loyalty, both general and category-specific, affects buying behavior. More recently, 

models that maximize shared market potential have been applied to retail contexts, including shopping 

malls (Ahmad et al., 2017; Ahmadi & Ghezavati, 2020; Lai et al., 2020), with varying success in 

identifying optimal trade-off points between access and exclusivity. 

Ahmad et al. (2023) studied shopping mall locations in West Amman, Jordan. They used a 

temporal resilience framework with the Network Analyst tool in ArcGIS. This helped them assess travel 

times to each mall. The research indicates that the area has an excessive number of shopping malls. This 

is due to poor planning. As a result, there are too many stores for the number of people living in the 

area. The results suggest that using planning standards from other areas could improve the situation. 

This study opens the door for future research on how shopping center locations affect different areas. It 

provides valuable insights for urban planners and retail stakeholders (Dong et al., 2023). 

However, despite their theoretical robustness, most of these models rely on static assumptions 

about travel time and accessibility. Only a few studies, such as Banerjee et al. (2020), begin to 

incorporate temporal data—using GPS records to optimize bike-sharing station locations—but these are 

still rare in the context of shopping mall planning. This reveals a notable gap in the integration of 

dynamic transport network data, such as real-time congestion or scheduled public transport variation, 

into location-allocation models for commercial facilities. Addressing this gap is one of the main 

motivations of the present study.  

It is important to highlight that so far in the literature review, little research has been found on the 

location of shopping centers in which Big Data sources have been used to analyze the dynamism of 

transport networks. Therefore, the aim of this study is to analyze the effect of the dynamic component 

of the public transport network and congestion on the demand served during the day by the current 

shopping centers in Madrid. To achieve this, we used two complementary Big Data sources. The first is 

the General Transit Feed Specification (GTFS). It is a standard format that machines can read. GTFS 

provides detailed information about public transportation schedules, stop locations, and transit routes. 

Many use it to model multimodal transit access. The second source is historical traffic data from 

TomTom. This company provides real-time and archived traffic info. They gather data from millions of 

GPS devices. This data shows congestion levels and average travel speeds on the road network. 

Using the GTFS data, we constructed a public transportation network to simulate population 

movement to commercial facilities and services by bus, metro, and other modes. With TomTom data, 

we modeled private vehicle movement across the urban road network, incorporating the spatial and 

temporal variation in congestion patterns observed throughout the day. 

Recently, GTFS (General Transit Feed Specification) data has become common in transport 

geography. It helps model public transport accessibility. GTFS gives standard info about transit routes, 

stops, schedules, and frequencies. This info helps with detailed time analyses. Researchers such as 

Farber et al. (2014), Stępniak & Goliszek (2017), and Karner (2018) have demonstrated that GTFS-

based models effectively highlight accessibility inequalities by simulating travel times at various times 

throughout the day. These studies employed metrics such as the Gini index and standard deviation. They 

measured accessibility among social groups and urban areas. Other applications, such as those by Liu 

et al. (2023, 2024) and Braga et al. (2023), highlight the importance of incorporating variability in public 

transport services to more accurately assess accessibility, particularly for vulnerable populations or 

during system disruptions. 

Despite these advances, most GTFS-based studies have focused on accessibility measurement 

rather than facility location. Kotavaara (2018) is one of the few exceptions, using GTFS data to identify 

http://www.geo-focus.org/


Pérez-Fernández, 2025         GeoFocus, 35 

 

 

94 

 

optimal locations for healthcare services in Finland. GTFS is rarely used in retail location-allocation 

models. This presents an opportunity to apply this method to commercial planning. 

Simultaneously, TomTom data has emerged as a vital resource for modeling vehicular mobility 

and congestion patterns. TomTom uses GPS data from millions of vehicles. This helps create historical 

traffic profiles. These profiles show average speeds, travel times, and congestion levels. They provide 

insights over time and in different areas. Research conducted by Moya-Gómez & García-Palomares 

(2017), García-Palomares et al. (2018), and Dingil et al. (2018) has employed TomTom data to evaluate 

the dynamics of car accessibility, simulate traffic conditions, and benchmark transport performance 

across urban landscapes. 

Additionally, Pritchard et al. (2019) and Tanveer et al. (2020) have integrated TomTom data with 

General Transit Feed Specification (GTFS) data to investigate multimodal accessibility. TomTom data 

is effective for assessing the performance of transportation systems. However, its application to location-

allocation problems in commercial facilities is still in its early stages. Recent work, including that of 

Moyano et al. (2018) and Moya-Gómez et al. (2024), demonstrates how incorporating congestion data 

enhances the realism of spatial planning models. These initiatives highlight the significance of 

considering time-dependent travel patterns, particularly when delineating retail service areas within 

congested urban environments. 

Nevertheless, further research is needed to understand the implications of these patterns on 

consumer behavior and facility performance. This study addresses the gap by using TomTom traffic 

profiles. It assesses the ease of access to shopping centers in the Madrid metropolitan area. Building on 

this literature, our study proposes a novel integration of GTFS and TomTom data into a dynamic 

location-allocation model for shopping centers in the Madrid metropolitan area. By considering 

temporal variability in both public and private transport networks, we aim to evaluate how accessibility 

patterns evolve throughout the day and how they influence the potential demand captured by existing 

commercial facilities. The study is guided by the following research questions: 

• How do fluctuations in public transport frequency and road congestion throughout the day affect 

accessibility to shopping centers? 

• To what extent do these dynamic accessibility patterns influence the demand coverage and 

market share under competitive conditions? 

To explore these questions, we used two dynamic spatial optimization strategies. The maximize 

attendance model demonstrated how changes in public transportation and road congestion impact 

demand at shopping centers during the day. The maximize shared market model looked at competition. 

It demonstrated how demand is spread across current facilities.  

The following structure organizes the paper. First, Section 2 presents the research method 

undertaken in this study. Section 3 shows our results from the dynamic location-allocation model for 

shopping centers in Madrid. In Section 4, we present our findings and conclude the paper by 

summarizing our main conclusions. 

2. Materials and methods 

2.1. Study Area 

To conduct this research, Madrid was chosen as the scenario for the empirical application of 

location-allocation models. The researchers selected Madrid because of data available to develop the 

location-allocation models. In addition, Madrid stands out as a dynamic city, with a metropolitan area 

abundant in different services and facilities. It is a multicultural city that offers a conducive environment 

for the location of services and businesses. The Madrid metropolitan area is located in central Spain and 

is part of the Community of Madrid, the country's capital city. Various global classifications and 

rankings reflect the importance of the Madrid metropolitan area. According to the Global Power Cities 

Index 2019, which ranks 48 cities in the world by their magnetism in attracting people, capital, and 
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businesses, Madrid is the thirteenth city in the world and the fifth in Europe, ranking leading London, 

New York, Tokyo, and Paris. The metropolitan area of Madrid has the largest population and provides 

services in Spain. It includes 28 municipalities (Figure 1) in which approximately 6,780,000 inhabitants 

live according to the 2020 Population Register. It is the main metropolitan area in Spain, surpassing 

Barcelona, where 5.5 million people live (Ayuntamiento de Madrid 2020). 

The main communication infrastructures in the metropolis have converged, positioning it as the 

primary logistics hub in Spain and Southern Europe. There is a significant network of highways and 

roads, including both radial and ring roads. It forms the core of national railway transport and facilitates 

effective connections with other autonomous communities and Europe.  

 
Figure 1. Study area. (a) Metropolitan area; (b) Community of Madrid; (c) Spain. 

2.2. Data for location-allocation models 

2.2.1. Public transportation networks and TomTom traffic history 

The dynamic component was incorporated into the street network downloaded from the National 

Geographic Information Center in Shapefile format. The GTFS files were acquired from the Madrid 

Regional Transport Consortium (CRTM) data portal. Using these data, a network was constructed to 

simulate the population movement by public transportation (Figures 2-3). For the design of Location-

Allocation Models (LAM) incorporating dynamism into the public transportation network. This network 

was built using the DisplayGTFS, AddGTFS, and Network Analyst tools in ArcMap 10.6 software from 

ESRI (Environmental Systems Research Institute). 

Additionally, historical traffic profiles (the Historical Speed Profiles product) collected by 

TomTom were used in the design of the network that simulates private car travel (Figures 4-5). 
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 Figure 2. Public transportation travel frequencies on Thursdays. Frequencies at (a) 

8:00 h; (b) 10:00 h; (c) 12:00 h; (d) 14:00 h; (e) 16:00 h; (f) 18:00 h; (g) 20:00 h. 
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Figure 3. Public transportation travel frequencies on Saturdays. Frequencies at (a) 8:00 h; 

(b) 10:00 h; (c) 12:00 h; (d) 14:00 h; (e) 16:00 h; (f) 18:00 h; (g) 20:00 h. 
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Figure 4. Thursday traffic behavior based on TomTom data. Traffic at (a) 8:00 h; (b) 

10:00 h; (c) 12:00 h; (d) 14:00 h; (e) 16:00 h; (f) 18:00 h; (g) 20:00 h. 
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Figure 5. Saturday traffic behavior based on TomTom data. Traffic at (a) 8:00 h; (b) 
10:00 h; (c) 12:00 h; (d) 14:00 h; (e) 16:00 h; (f) 18:00 h; (g) 20:00 h. 

Based on the two products managed by TomTom (MultiNet® and Historical Speed Profile), the 

private transportation network used to calculate LAM with a dynamic component during the day is 

constructed. The established parameters are arc connections through endpoints, prohibited turns, traffic 

directions, and section hierarchy. 
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The following impedances are defined: 

• Average travel time (times with average speeds), 

• Kilometers (length of network arcs), 

• Minutes (times obtained using the speeds calculated in the MultiNet product), and 

• Travel Time (variation of arc speeds). 

Both networks were used to execute the location-allocation model (LAM), allowing for the 

analysis of the mobility patterns of demand by day and hour. 

2.2.2. Census Tracks and Shopping Centers 

To execute LAM, census data at the census section level downloaded from the Continuous 

Population Register of 2020 and available on the Spanish National Institute of Statistics (INE) server 

were used. The cartography of the census sections downloaded from the Madrid Community data server 

was used to georeferencing the population data. Subsequently, the centroid of each census section was 

calculated and used as the demand point for the service. In the location models, a layer with the 

coordinates of the shopping centers was employed as the supply point. Both layers were downloaded in 

Shapefile format from the Madrid Community open data portal. We worked with 91 centers located in 

the metropolitan area of Madrid. This file contains geographic coordinates, shopping center names, and 

gross leasable areas. 

2.3. Methods 

In the introduction, this article discusses various theoretical and practical approaches to 

developing location-allocation models (LAM). These approaches have resulted in diverse solutions, 

including maximizing attention and maximizing market share in terms of time or distance for the target 

population. However, most location-allocation models to date have not considered the temporal 

dynamism of the transport network used for model development. This oversight stems from difficulties 

in obtaining high temporal-resolution data, which is a limitation that has been fortunately overcome with 

the advent of big data sources. 

In this context, this study considers the incorporation of dynamism in the network input to LAM. 

With the emergence of new data sources, such as big data, researchers have investigated the 

implementation of LAM at different times on Thursdays and Saturdays. Using data from both public 

and private transportation networks, this study analyzed the impact of bus and private car travel on 

demand throughout the day. 

2.3.1. Selection of Candidates and Demand 

Current shopping centers in the metropolitan area of Madrid were used as required facilities, and 

their gross leasable area (GLA) was used as an attraction parameter. Meanwhile, demand points were 

obtained from centroids corresponding to census sections. The Features to Point tool in ArcGIS Pro 3.2 

extracted centroids in census sections. These sections include a field containing the population used to 

weigh the demand. 

2.3.2. Development of dynamic location-allocation model 

After establishing public and private transportation networks and identifying candidate and 

demand sites, we implemented location-allocation models using the location-allocation module of 

ArcMap 10.6 (ESRI) Network Analyst. This study analyses the impact of changes in public 

transportation frequencies and congestion on the demand served by existing shopping centers in the 

Madrid metropolitan area. This study implemented solutions that maximize assistance and maximize 

market share. 
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A) Maximize Attendance solution 

Existing shopping centers in the Madrid metropolitan area served as required facilities, with their 

gross leasable area (GLA) as a critical attraction parameter. Demand points were derived from the 

respective centroids of the census tracts, each containing the population data used to gauge demand. A 

travel time threshold of 10 minutes from demand points to candidate sites was applied to define service 

areas. This value is grounded in the empirical findings of Gutiérrez Puebla & Chicharro Fernández 

(2003), who reported an average access time of 11 minutes to selected shopping centers in the Madrid 

metropolitan area. Additionally, using a 10-minute travel time threshold is a well-established method in 

facility location planning. It ensures that facilities are optimally positioned to efficiently serve demand 

points, thereby enhancing accessibility and service coverage. This approach is widely supported by 

optimization models and practical applications in urban service planning, demonstrating its 

effectiveness in improving spatial coverage and minimizing response times (Yildiz & Ekinci, 2017). 

The maximize attendance strategy prioritizes facilities by assigning maximum demand weight, 

assuming that demand decreases with distance from candidate sites to potential demand points. 

According to Alonso (2016), demand is maximized within a certain distance threshold, emphasizing 

proximity to supply points. Maximizing attendance suggests that the further people travel to access a 

facility, the less likely they are to use it (Erfani et al. 2018, Rahman et al. 2021). The equation used is 

as follows: (Zhang et al. 2024). 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑟 𝑍 =  ∑ ∑ 𝑝𝑖

𝑛

𝑗=𝑖

𝑚

𝑖=1

(𝑆 − 𝑑𝑖𝑗)𝑥𝑖𝑗  

Where 𝑖 = set of demand locations; 𝑗 = set of candidate locations; 𝑝𝑖 = population to be served 

at the demand site 𝑖; 𝑆 = distance; 𝑑𝑖𝑗 = the shorest distance from a site 𝑖 to site j; 𝑥𝑖𝑗 = decision 

variable that will take the value of 1 if the demand 𝑖 is covered by the candidate site j and 0 otherwise. 

We applied the maximize attendance strategy on two specific days (Thursday and Saturday) 

across various time slots: 8:00 h, 10:00 h, 12:00 h, 14:00 h, 16:00 h, 18:00 h, and 20:00 h, chosen to 

represent typical weekdays and weekends. Additionally, we examined off-peak hours (10:00 h, 12:00 h, 

14:00 h, 16:00 h, 20:00 h) to assess network behavior when public transportation frequencies and road 

congestion are low. This hour allowed us to evaluate the impact of different transportation frequencies 

and congestion on shopping center attendance throughout the day. 

B) Maximize market Share solution 

Maximizing market share solution is commonly used to identify facilities where competitor 

characteristics must be considered (Banerjee et al. 2020, Drezner 2011) In this case, the maximize 

market share solution is used, maintaining parameters similar to those of the previous model but 

adjusting the gross leasable area of each shopping center as the attraction criterion. 

The equation used is as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑟 𝑍 = ∑ 𝑎𝑖𝑦𝑖 + ∑ (
𝑎𝑖

2
) 𝑧𝑖

𝑚

𝑖=1

𝑚

𝑖=1

   

Subject to: 

𝑦𝑖 ≤ ∑ 𝑥𝑗

𝑗∈𝑁𝑖

 𝑖 = {1,2, … , 𝑚}; 𝑗 = {1,2, … , 𝑛} (1) 

𝑧𝑖 ≤ ∑ 𝑥𝑘

𝑘∈𝐾𝑖

 𝑖 = {1,2, … , 𝑚} (2) 
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𝑧𝑖+𝑦𝑖 ≤ 1 𝑖 = {1,2, … , 𝑚} (3) 

∑ 𝑥𝑗=𝑃

𝑗∈𝐽0∪𝐽𝑁

  (4) 

Where 𝑖 = demand sites that are available for capture; 𝑗 = candidate sites for facilities; 𝐽0 = set of 

occupied facilities; 𝐽𝑁 = set of non-occupied facilities and are eligible; 𝑎𝑖 = population in node 𝑖; 𝑦𝑖  = 

{1 if node 𝑖 gets a new service within 𝑆𝑖 that is closer to 1, 0 otherwise; 𝑥𝑗 1 if the facility is located in 

𝑗, 𝑁𝑖 = {𝑗∈𝐽𝑁 |𝑑𝑖𝑗<𝑆𝑖  } set of facilities that are strictly closer to node 𝑖 than to its nearest facility; 𝑑𝑖𝑗 = 

shortest distance between site 𝑖 and site 𝑗; 𝑆𝑖 = distance from node 𝑖 to the nearest site 𝑗; 𝐾𝑖  = the set of 

occupied and unoccupied facilities located at the same distance from 𝑖 as the nearest facility 𝑖; 𝑧𝑖= {1 if 

node 𝑖 es captured by a service located within 𝐾𝑖; 0 otherwise. 

If node 𝑖 is captured by a facility located within 𝑘𝑖, meaning the facility currently closest to 𝑖 or a 

facility whose distance from 𝑖 is equal to the distance from 𝑖 to the currently closest facility, then 𝑧 is 1 

if it is captured and doubly equipped. 

Constraints (1) form the basis of the formulation. They state that a demand point is not captured 

by a new facility unless the facility is located closer to 𝑖 than its currently closest facility. Constraints 

(2) indicate that a demand node 𝑖 is captured but doubly served 𝑧 = 1 only if a new facility is located in 

a position 𝑘 ∈ 𝐾, the set of positions, equally distant from 𝑖 as the currently closest provider to node 𝑖. 
Constraints (3) prevents a demand site from being captured in more than one location. Constraints (4) 

limit the number of new facilities. This is expressed as follows: if the travel cost from the demand point 

to the site of the incoming competitor is less than the current cost, the new competing establishment 

captures the demand. If the travel cost is the same, the demand is shared between the two (the new and 

the preexisting establishment). Finally, if the travel cost of the nearest site to the incoming competitor 

exceeds the travel cost of the competitor, the competitor does not capture the demand (Bosque et al. 

2012). The model described in this section has been applied by various authors to locate retail sites 

(Saidani et al. 2012, Suárez-Vega et al. 2012), shopping centers (Ahmad et al. 2017), and bike stations 

(Banerjee et al. 2020), among others. 

3. Results 

This section summarizes the LAM results for shopping centers in Madrid’s metropolitan area. 

First, the results obtained when applying the solution to maximize attendance are presented.Then, the 

outcomes derived from the solution to maximize market share are shown. 

3.1. Demand Covered by the Solution Maximize Attendance 

Table 1 lists the demand covered by the network of shopping centers in the metropolitan area of 

Madrid across various time slots using the GTFS public transportation network. It was observed that the 

allocated population barely reached 5 % on Thursdays and Saturdays within a 10 min travel time. The 

data indicate that shopping centers are not covered by public transportation because nearly 95 % of the 

population still needs to be allocated to any shopping center. The results show minimal differences 

between the studied days and time slots. To explain the changes in the covered population across time 

slots (Table 1), we utilized the 18:00 h time slot as a reference for comparison. We selected this time 

slot based on Google Maps graphs showing peak visiting hours at shopping centers. Analyzing 

Thursdays, a slight decrease was noted across most time slots, with the lowest value at 14:00 h 

representing 1.8 %. Conversely, Saturdays increased in some time slots, with the highest value again at 

14:00 h (1.3 %). 
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Table 1. Population covered by shopping centers according to GTFS. 

Hours 
Thursday 10 min   Saturdays 10 min 

Total % Inc. Inc%   Total % Inc. Inc% 

8:00 296 797 5.1 3185 1.1  276 739 4.8 -6305 -2.2 

10:00 292 228 5.1 -1385 -0.5  282 897 4.9 -147 -0.1 

12:00 293 645 5.1 32 0.0  280 014 4.8 -3031 -1.1 

14:00 288 254 5.0 -5358 -1.8  286 619 5.0 3575 1.3 

16:00 290 517 5.0 -3096 -1.1  286 474 5.0 3429 1.2 

18:00* 293 613 5.1 0.000 0.0  283 044 4.9 0.000 0.0 

20:00 291 766 5.0 -1847 -0.6   284 812 4.9 1767 0.6 

*Reference hour. Inc = Increment. min = minutes. 

The low values in the allocated population and the minor differences in the data may be related 

to the distance of shopping centers from the main public transportation routes and the frequent 

disconnects between the centers and the urban fabric (Gutiérrez Puebla & Chicharro Fernández, 2003). 

Error! No s'ha trobat l'origen de la referència. depicts the demand distribution profiles on T

hursdays and Saturdays across different time slots using the GTFS network. The horizontal axis 

represents the various studied time slots, whereas the vertical axis indicates the population assigned to 

shopping centers. It is inferred that on Thursdays, there is greater demand for coverage in the early hours 

of the day (reflecting a higher public transportation frequency, although shopping centers are closed at 

8:00). Coverage then declines at 10:00, recovering at 12:00 and 18:00, coinciding with popular shopping 

hours. On Saturdays, coverage is lower in the early hours (due to lower public transportation frequency), 

with the highest values at 14:00, 16:00, and 18:00. These hours correspond to when the Madrid 

population typically visits shopping centers on weekends. Overall, when using public transportation 

(GTFS), Thursdays witness a higher population allocation to shopping centers than Saturdays. 

 

Figure 6. Population covered by shopping centers according to GTFS network. 

Exploring the results obtained using TomTom (Table 2), it is observed that the covered demand 

on Thursdays and Saturdays exceeds 40 % across all studied hours. On Thursdays, at 14:00, shopping 

centers cover 45.2 % of the population. This higher percentage was associated with lower congestion 

during this hour. On Saturdays, the best coverage is at 8:00, with approximately 50 % of the population 

allocated. 
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The weekend results were due to reduced traffic congestion during the early hours on Saturdays. 

Moreover, the average percentage of the allocated population on Thursdays was 43.5 %, whereas on 

Saturdays, the average was 47.1 %. Comparing the averages for both days shows that Saturdays attract 

3.6 % more people (211 860 customers). 

Table 2. Population covered by shopping centers according to TomTom. 

Hours 
Thursday 10 min   Saturdays 10 min 

Total % *Inc. Inc%   Total % Inc. Inc% 

8:00 2 545 710 44.0 187 903 8.0  2 854 740 49.4 147 822 5.5 

10:00 2 561 573 44.3 203 766 8.6  2 792 994 48.3 86 076 3.2 

12:00 2 511 807 43.5 154 000 6.5  2 723 667 47.1 16 749 0.6 

14:00 2 609 816 45.2 252 008 10.7  2 768 109 47.9 61 192 2.3 

16:00 2 607 240 45.1 249 432 10.6  2 826 189 48.9 119 271 4.4 

18:00 2 357 807 40.8 0.000 0.0  2 706 918 46.8 0.000 0.0 

20:00 2 508 156 43.4 150 349 6.4   2 693 500 46.6 -13 418 -0.5 

To compare the evolution of population coverage throughout the day (Table 2), the 18:00 time 

slot was selected as the reference value. It is observed that on Thursdays, 14:00 and 16:00, the most 

significant increases in the allocated population (10.7 % and 10.6 %, respectively). Focusing on 

Saturday data, a more significant percentage increase (5.5 % in the allocated population) occurred at 

8:00. Additionally, the 16:00 h record a 4 % increase in coverage, an afternoon time when people 

frequently visit shopping centers on weekends. 

Figure 7 illustrates the population profiles assigned on Thursdays and Saturdays across different 

time slots using the TomTom network. 

 

Figure 7. Population covered by shopping centers according to TomTom network. 

Saturdays exhibit higher coverage than Thursdays. On Saturdays, the highest population coverage 

occurs at 8:00 and 16:00; at 18:00, congestion increases, resulting in a decrease in the population 

allocated to shopping centers within that 10 min time slot. Conversely, notable values were observed on 

Thursdays at 14:00 and 16:00 (Error! No s'ha trobat l'origen de la referència.), indicating lower v

ehicle traffic during these time slots. Meanwhile, a decrease was evident at 18:00, a time of significant 

traffic volume in Madrid, according to TomTom traffic data. Significant differences in population 

coverage were observed between GTFS and TomTom. Note that with public transportation, the weekend 
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coverage of demand is lower. With the TomTom network, the opposite occurs, as Saturdays experience 

less vehicular congestion, leading to increased demand compared with Thursdays (Error! No és una 

autoreferència de marcador vàlida.). Furthermore, the population can leverage the low vehicular 

congestion on weekends, especially at 14:00 and 16:00, to visit shopping centers for shopping or dining. 

Table 3. Differences in the population covered between Saturday and Thursday (Saturday-
Thursday). 

Hours 
GTFS   TomTom 

Total %  Total % 

8:00 -20 058 -6.8   309 030 12.1 

10:00 -9 331 -3.2  231 421 9.0 

12:00 -13 631 -4.6  211 860 8.4 

14:00 -1 635 -0.6  158 294 6.1 

16:00 -4 043 -1.4  218 949 8.4 

18:00 -10 568 -3.6  349 111 14.8 

20:00 -6 954 -2.4  185 344 7.4 

Maps (Figure 1) depict the population coverage results by shopping centers across different time 

slots and their percentage changes. These percentages are derived by comparing the demand during the 

18:00 time slot and analyzing the percentage increase or decrease in hourly allocations on Thursdays 

and Saturdays using both networks. 

For improved visualization, only 18:00 h and 12:00 h on Saturdays were considered. The size of 

the circles indicates the population assigned to each shopping center at 18:00 h , while red tones indicate 

changes between 12:00 h and 18:00 h. 

Figure 1 reveals that when using the GTFS network, most shopping centers exhibit changes 

compared with the reference hour (18:00 h). The 18:00 h time slot showcases some shopping centers 

with significant population volumes, such as Dos de Mayo, Arenal 9, El Jardín de Serrano. On 

Saturdays, at noon, many shopping centers experience losses in captured demand compared with 

18:00 h, especially those located in the peripheral and downtown areas of the metropolitan area. 

Examples of shopping centers affected by variations in public transportation frequency at noon include 

Ecomóstoles Centro, Arenal 9, and El Jardín de Serrano. 

On Saturdays, shopping centers that achieve higher population allocation are Dos de Mayo, 

Arenal 9, Ecomóstoles Centro, El Jardín de Serrano, and Alcalá Norte. This behavior may be related to 

good connectivity with public transportation (higher frequency of trips and routes) between demand 

locations and shopping centers. 
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Figure 1. Population covered and percentage change between 12:00 h and 18:00 h h 
(GTFS). (a) Saturday at 18:00 h; (b) Saturday at 12:00 h. 

The demand behavior of private transportation (TomTom network) was also analyzed, again using 

the 18:00 h time slot as a reference, to study the percentage change in covered demand during other time 

slots. Figure 2 shows that on Saturdays, at noon, many shopping centers record favorable percentage 

variations. These percentages stem from a higher allocated population on weekends and during times 

when people visit shopping centers more frequently. Moreover, the positioning of shopping centers, 

typically outside central areas, renders them more susceptible to weekday traffic congestion during the 

afternoon peak hours. 

Regarding covered demand, the most favored shopping centers in both time slots are Los Ángeles, 

Plaza Aluche, Alcampo-Moratalaz, La Ermita, and Plaza Río (Figure 2). These commercial centers are 

situated adjacent to densely populated districts, including Arganzuela, Usera, Retiro, Moratalaz, 

Villaverde, and Carabanchel. Note that these shopping centers, with a higher allocated population, 

exhibit the following characteristics: they are located in the periphery of the Central Almendra of the 
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Municipality of Madrid, close to the M30 highway, and distant from areas of high traffic congestion in 

the Centro and Salamanca districts. These characteristics may be related to the extensive coverage of 

these shopping centers on Saturdays at 18:00 h, which coincides with a time when a considerable portion 

of the population visits Madrid shopping centers. 

 

Figure 2. Population covered and percentage change between 12:00 h and 18:00 h (TomTom). 
(a) Saturday at 18:00 h; (b) Saturday at 12:00 h. 

Figure 3 presents the average demand per day, hour, and network. Comparing GTFS with 

TomTom, differences in average population coverage among shopping centers were evident. For 

instance, regarding public transportation, a higher proportion of people traveled on Thursdays than on 

Saturdays, although the average demand remained similar across all time slots. Conversely, with 

TomTom, the opposite occurs, as Saturdays allocate more population than Thursdays, covering an 
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average of almost 30 000 inhabitants at different times. Comparing the results obtained using both 

networks, we find that the average population allocated to shopping centers was significantly more likely 

to use private transportation. 

 

Figure 3. Average population covered according to hours. 

3.2. Population Allocated to Shopping Centers Using the Maximize Market Share Solution 

The Maximize Market Share solution was employed to evaluate the impact of changes in public 

transportation frequencies and private transportation congestion on the demand share assigned to 

shopping centers in the presence of competitors. 

The proposed solution maximizes the market share of a given set of facilities. The total market 

share is the sum of all customer weights for valid demand points. The market share solution is a gravity 

model that allocates demand to each location using information about the importance (weight) of the 

company's facilities and the weight of competitors’ facilities (Environmental Systems Research 

Institute). According to this solution, the population of a census tract is not assigned to a single center; 

instead, the population of the tracts is distributed among nearby centers based on distance and size. 

The market share solution was developed using existing shopping centers (mandatory candidates) 

and the centroids of census tracts in Madrid (demand). The location-allocation model was implemented 

using public transportation (GTFS) and private transportation (TomTom) networks. 

Once again, dynamic scenarios were developed by selecting two days of the week (Thursdays and 

Saturdays) and various time slots (8:00 h, 10:00 h, 12:00 h, 14:00 h, 16:00 h, 18:00 h, 20:00 h). The 

impedance parameter for a 10 min travel time was established. The attraction weighting for shopping 

centers was the Gross Leasable Area (GLA), which is a standard indicator of shopping center size, while 

the population of each census tract determined the population demand weight. Table  summarizes the 

model results obtained using the GTFS network. The meaning of each column in the table is explained 

for clarity. The first column displays the hours used to run the location-allocation models. The second 

and sixth columns contain the population assigned on Thursdays and Saturdays. The third and seventh 

columns show the percentage of the assigned population relative to the total population obtained from 

the 2020 census (5 779 974 inhabitants). Finally, the fourth, fifth, eighth, and ninth columns indicate the 

absolute and percentage increases compared with the reference hour (18 h). 

The assigned population was higher on Thursdays than on Saturdays. Hours 16:00 h and 20:00 h 

were observed to register lower values than the reference hour, whereas the remaining hours recorded 
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higher demand. Focusing on Saturdays, the percentage increase for all hours was negative, except for 

14 h. 

Table 4. Population allocated to shopping centers at different times of the day using the GTFS 

network. 

Hours 
Thursday 10 min   Saturdays 10 min 

Total % Inc. Inc%  Total % Inc. Inc% 

8:00 1 129 561 19.5 87 119 8.4   972 942 16.8 -35 650 -3.5 

10:00 1 087 069 18.8 44 627 4.3  958 090 16.6 -50 502 -5.0 

12:00 1 071 123 18.5 28 681 2.8  937 018 16.2 -71 574 -7.1 

14:00 1 050 334 18.2 7 892 0.8  1 033 056 17.9 24 464 2.4 

16:00 1 029 206 17.8 -13 236 -1.3  981 320 17.0 -27 272 -2.7 

18:00* 1 042 442 18.0 0.000 0.0  1 008 592 17.4 0.000 0.0 

20:00 1 007 033 17.4 -35 409 -3.4   996 535 17.2 -12 057 -1.2 

However, using the TomTom network yielded different results. First, a demand above 92  % was 

assigned on both days; furthermore, on Thursdays, there was an increase in all hours compared to the 

reference hour (18 h) whereas, on Saturdays, there were few changes between the different hours studied 

(Table ). These few changes can be partly explained by the fact that weekend activities in the city slow 

down, resulting in smooth traffic flow during the day. 

Table 5. Population allocated to shopping centers at different times of the day using the 

TomTom network. 

Hours 
Thursday 10 min   Saturdays 10 min 

Total % Inc. Inc%   Total % Inc. Inc% 

8:00 5 453 046 94.3 1 171 55 2.2  5 548 412 96.0 27 820 0.5 

10:00 5 466 652 94.6 130 761 2.5  5 538 004 95.8 17 412 0.3 

12:00 5 422 638 93.8 86 747 1.6  5 529 474 95.7 8 882 0.2 

14:00 5 484 225 94.9 148 334 2.8  5 537 742 95.8 17 150 0.3 

16:00 5 485 009 94.9 149 118 2.8  5 545 828 95.9 25 236 0.5 

18:00 5 335 891 92.3 0.000 0.0  5 520 592 95.5 0.000 0.0 

20:00 5 433 244 94.0 97 353 1.8   5 508 003 95.3 -12 589 -0.2 

Table  summarizes the differences between the days and networks analyzed. Public transportation 

is less efficient on Saturdays than on Thursdays, as evidenced by the negative percentages at various 

hours. 

On average, weekends leave about 7 % fewer people unassigned compared with Thursdays, with 

the most significant impact being at 8 o'clock, with a decrease of around 14 %. The opposite occurs with 

the private transportation network, which provides excellent coverage on Saturdays. On average, with 

the private transportation network, approximately 92,478 more inhabitants (2 %) are served on 

Saturdays than on Thursdays. The most significant impact was recorded at 18 h, which coincides with 

the time when Madrid residents typically visit shopping centers on weekends. 
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Table 6. Differences between the allocated population (Saturday-Thursday). 

Hours 
GTFS  TomTom 

Total %  Total % 

8:00 -156 619 -13.9   95 366 1.7 

10:00 -128 979 -11.9  71 352 1.3 

12:00 -134 105 -12.5  106 836 2.0 

14:00 -17 278 -1.6  53 517 1.0 

16:00 -47 886 -4.7  60 819 1.1 

18:00 -33 850 -3.2  184 701 3.5 

20:00 -10 498 -1.0  74 759 1.4 

 Figure 4 shows the model results when using the GTFS and TomTom networks. The brown stars 

represent the locations of actual shopping centers; the brown squares indicate shopping centers with no 

assigned demand. The gray points refer to unassigned locations. In contrast, brown lines indicate 

shopping centers where demand is moving. 

On both days (Thursdays and Saturdays), many census tracts (gray points) were unassigned to 

shopping centers, especially in the central part of the study area. In addition, shopping centers should 

obtain assigned demand locations (brown squares) (Figure 4-12). Furthermore, using the TomTom 

network (private transportation) provides better coverage than that obtained using public transportation. 

However, certain uncovered areas (gray points) were observed, especially at 18 h on Thursdays (Figure 

13-14), as it became difficult to reach a shopping center within 10 min. This behavior may be related to 

the fact that 18 h is a time of congestion in Madrid. When comparing Thursdays and Saturdays, it is 

observed that the number of uncovered sites decreased on Saturdays at all hours due to a more significant 

population assignment. 

When comparing Thursdays and Saturdays, it is observed that unassigned sections decrease 

during the weekend in all time slots due to a more significant population assignment on weekends 

(Figures 13-14). 

Comparing the results obtained with the solutions of maximizing market share and maximizing 

attendance, it is found that the dynamism of GTFS and TomTom networks has a significant impact. 

Figure 8 summarizes the assignment percentages obtained using both solutions. The vertical axis 

represents the proportion of the assigned populations. The horizontal axis shows the number of hours 

used in model development. At the same time, the colors of the bars represent the days and networks 

used. 

It is observed that with the solution of maximizing market share, much more demand is assigned 

than with the solution of maximizing attendance. For example, with the GTFS network, an average of 

12 % more population was assigned for both days. Compared to the TomTom network, this rose to 

nearly 50 %. It is also observed that with the attendance maximization solution, values exceeding 40 % 

of the assigned population are reached in all time slots with the TomTom network. Meanwhile, with the 

shared market maximization solution, this figure exceeds 90 %. 

The differences between the results obtained using the two solutions have several possible 

explanations. First, the objective functions of the maximizing attendance algorithm and the market share 

maximization solution are entirely different. In particular, the attendance maximization solution assigns 

the most significant population at a given time. The assigned population decreased as the distance 

between facilities and user locations increased. In addition, the solution assigns a demand to a single 

shopping center (the closest one). 

 



Dynamic location-allocation models for shopping centers: integrating transport and traffic data into the 

network 

 

  www.geofocus.org 

111 

 

 

Figure 4. Details of unallocated census tracts for Thursdays using the GTFS network. (a) at 
18:00 h; (b) at 16:00 h; (c) at 12:00 h. 
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Figure 5. Details of unallocated census tracts for Saturdays using the GTFS network. (a) at 
18:00 h; (b) at 16:00 h; (c) at 12:00 h. 
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Figure 6. Details of unallocated census tracts for Thursdays using TomTom network. (a) at 
18:00 h; (b) at 16:00 h; (c) at 12:00 h. 
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Figure 7. Details of unallocated census tracts for Saturdays using TomTom network. (a) at 
18:00 h; (b) at 16:00 h; (c) at 12:00 h. 
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Figure 8. Percentage of the allocated population according to the solution used (GTFS network 
and TomTom). 

In contrast, the shared market maximization solution uses another variable that influences model 

results. To develop the proposed solution, all possible information about competitors is required. For 

example, in this study, the gross leasable area of each shopping center was used (a variable commonly 

used in models with competitors) to attract demand points. Furthermore, a demand point within the 

established time threshold is assigned, in its entirety, to one or more shopping centers. At the same time, 

the population is assigned proportionally to the attractiveness of each shopping center. 

Second, the impact of public and private transportation networks is also notable. The public 

transportation network may influence the results, mainly because of the different travel frequencies 

during the day. The attendance maximization solution algorithm affects the percentage of assigned 

populations because only a portion of the demand is distributed to a shopping center. In contrast, a 

shared market maximization solution distributes the population among several establishments. On the 

other hand, with a private transportation network, one has more freedom to visit shopping centers. The 

attendance maximization solution was more affected by vehicle congestion because the demand was 

allocated to the nearest shopping center. In contrast, a shared market maximization solution can be 

allocated to one or more centers. 

4. Discussion 

This study aimed to evaluate how dynamic transport conditions, specifically public transit 

frequency and road congestion, affect the demand coverage of shopping centers in the Madrid 

metropolitan area. We created two location-allocation models. One model focuses on maximizing 

attendance. The other aims to maximize the shared market. Both use dynamic networks from GTFS and 

TomTom Big Data sources. These models allowed us to simulate real-world variations in accessibility 

based on time of day and mode of transport. 

The results reveal that demand captured by shopping centers is susceptible to changes in network 

conditions. For instance, in the GTFS-based model, coverage was significantly higher on weekdays than 

on weekends due to more frequent service schedules. The TomTom-based model had better coverage 

on weekends. Lower congestion made it easier for vehicles to access the area. In both cases, network 

dynamics resulted in significant differences in spatial coverage. This shows that static models might not 

accurately reflect service reach and market competition. 

These findings connect with new research on accessibility that considers time changes (e.g., Braga 

et al., 2023; Moya-Gómez & García-Palomares, 2017). They also expand the study to the less explored 

area of shopping mall location planning. Our approach differs from earlier studies that focused on 

average travel times or static networks (Ahmad et al., 2017; Ahmadi & Ghezavati, 2020). We focus on 

how accessibility varies over time and among different users. 
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From a practical standpoint, the use of dynamic transport networks enables commercial planners 

to adjust operations in response to temporal demand shifts. Staff allocation, business hours, or 

promotional campaigns could be optimized based on hourly accessibility patterns. Additionally, this 

method can be applied to other urban services, such as pharmacies and restaurants. It can work in cities 

that have similar data systems. 

Despite its contributions, the study has limitations. The models assume homogeneity in consumer 

behavior and do not yet integrate socio-demographic or behavioral attributes. Data limitations, 

especially with proprietary Big Data sources like TomTom, create challenges. These challenges include 

access issues, interoperability problems, and processing needs. Moreover, the models do not currently 

account for external factors such as pricing strategies, land-use regulations, or commercial leasing 

dynamics. 

Future research could explore the integration of consumer data (e.g., transaction records, foot 

traffic counts) to enhance demand modeling. Incorporating real-time data streams or comparing 

performance across different traffic datasets (e.g., HERE, Waze) could also provide new insights. 

Additionally, examining the relationship between flexible business hours and changing accessibility 

patterns is a new area of research that has significant policy implications. 

In conclusion, this study demonstrates that incorporating time factors into location-allocation 

models enhances their realism. It also enhances their usefulness in making decisions for commercial 

planning. Utilizing GTFS and TomTom data enables us to comprehend the intricate nature of urban 

systems. This approach also builds a solid base for future research on dynamic service accessibility. 
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