
 

Padial-Iglesias, M., Pons, X., Serra, P., Ninyerola, M. (2022). Does the gap-filling method influence long-

term (1950–2019) temperature and precipitation trend analyses? GeoFocus (Artículos), Revista Internacional 

de Ciencia y Tecnología de la Información Geográfica, 29, 5–33. https://dx.doi.org/10.21138/GF.773 

 

Recepción: 08/04/2022  Aceptación definitiva: 19/05/2022 
  www.geofocus.org 

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)  

5 

 

 

 

 

 

DOES THE GAP-FILLING METHOD INFLUENCE LONG-TERM (1950–2019) 

TEMPERATURE AND PRECIPITATION TREND ANALYSES? 

 

 

 
1aMario Padial‐Iglesias    , 1bXavier Pons        , 1cPere Serra        , 2dMiquel Ninyerola 

1 Grumets Research Group, Departament de Geografia, Edifici B. Universitat Autònoma de Barcelona. 

08193, Bellaterra, Catalonia, Spain 
2 Grumets Research Group, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Edifici C. 

Universitat Autònoma de Barcelona. 08193 Bellaterra, Catalonia, Spain 
amario.padial@uab.cat, bxavier.pons@uab.cat, cpere.serra@uab.cat, dmiquel.ninyerola@uab.cat 

 

 

 

 

 

 

ABSTRACT 

Incomplete climatic series require gap-filling approaches so they can be used in homogeneous long-

term spatiotemporal trend analyses. Monthly mean Temperature (MT) and Precipitation (PR) databases 

from the meteorological stations of the Iberian Peninsula have a high percentage of data gaps: 80.21 % and 

73.25 % for the period 1950–1979 (P1), and 61.82 % and 58.03 % for the period 1980–2019 (P2). The 

different gap-filling methods of the Emmental software were tested to determine their performance and 

whether the gap-filling method influences these trend analyses. The nonparametric Theil-Sen approach and 

the Mann-Kendall test were used to assess the trend magnitude and its significance. The results showed (i) 

similar patterns between the evaluated methods, but with (ii) spatial differences, especially during P1. (iii) 

The comparison between standardized gap-filled and unfilled series did not show significant differences for 

MT and PR, although a reduction in the trend variability occurred in the first case (filled). (iv) Summer 

mean temperatures showed the largest warming trend (0.27 °C/decade), while autumn showed the smallest 

(0.21 °C/decade) (median data for P1 and P2). Overall, an increase of 1.45 °C occurred in the entire period 

(annual median). (v) PR did not show any clear trend in any month in the entire period. This research has 

shown how climate trends can be affected by a reduction in data variability due to the application of gap 

filling methods. Although accounting for variability is of crucial importance for climate analysis, ignoring 

discontinuities in derived climatic surfaces causes greater spatiotemporal inconsistencies in derived climate 

products. 

 

Keywords: gap-filling; time series; meteorological stations; long-term climate trend analysis; mean 

temperature; precipitation; Iberian Peninsula. 
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¿INFLUYE EL MÉTODO DE RELLENO DE DATOS FALTANTES EN LOS ANÁLISIS DE 

TENDENCIAS DE TEMPERATURA Y PRECIPITACIÓN A LARGO PLAZO (1950–2019)? 

 

RESUMEN 

Las series climáticas incompletas requieren de enfoques de relleno de lagunas de información para que 

puedan ser usados en el análisis homogéneo de tendencias espaciotemporales a largo plazo. La base de datos 

mensual de Temperatura Media (MT) y Precipitación (PR) de las estaciones meteorológicas de la Península 

Ibérica presenta un alto porcentaje de datos ausentes: 80.21 % y 73.25 % para el periodo 1950–1979 (P1), 

y 61.82 % y 58.03 % para el periodo 1980–2019 (P2). Se emplearon los diferentes métodos de relleno de 

datos faltantes del software Emmental para determinar su rendimiento y si el método de relleno influye en 

el análisis de las tendencias. El enfoque no paramétrico de Theil-Sen y la prueba de Mann-Kendall evaluaron 

la magnitud de la tendencia y su significación. Los resultados mostraron (i) patrones similares entre los 

métodos evaluados, pero con (ii) diferencias espaciales, especialmente durante P1. (iii) La comparación 

entre las series normalizadas completadas y no completadas no mostró diferencias significativas para la MT 

y la PR, aunque en el primer caso (completadas) se produjo una reducción de la variabilidad de las 

tendencias. (iv) La temperatura media de verano mostró la mayor tendencia al calentamiento 

(0.27 °C/década), mientras que la menor tuvo lugar en otoño (0.21 °C/década) (datos medios para P1 y P2). 

En general, se produjo un incremento de 1.45 °C en todo el período (mediana anual). (v) La PR no mostró 

una tendencia clara en ningún mes considerando todo el período. Esta investigación ha demostrado cómo 

las tendencias climáticas pueden verse afectadas por la reducción de variabilidad de los datos debida a la 

aplicación de métodos de relleno de datos ausentes. Tener en cuenta la variabilidad de los datos es de crucial 

importancia para análisis climáticos, pero ignorar las discontinuidades en las superficies climáticas 

derivadas causa mayores inconsistencias espaciotemporales en los productos climáticos derivados. 

 

Palabras clave: Relleno de datos faltantes; series temporales; estaciones meteorológicas; análisis de las 

tendencias climáticas a largo plazo, temperatura media, precipitación, Península Ibérica.  

 

1. Introduction 

Monitoring climate change requires observational datasets of long-time periods, which should be as 

complete as possible to ensure a consistent time series analysis, the comparison between different series, 

the detection of breakpoints, and the generation of multitemporal surfaces to derive climate change metrics, 

such as the climate velocity (Loarie et al., 2009; Dobrowski and Parks, 2016; Brito-Morales et al., 2018). 

Furthermore, the development of societal and environmental climate change mitigation and adaptation 

strategies depends on the quality of the climate data. However, missing values (data gaps) in the series are 

common, and there are very few stations with a complete long-term series, which is a big problem when the 

geographical variability of the climate is a major feature. For instance, the number of observatories recording 

meteorological variables has increased gradually in the Iberian Peninsula between 1860 and 2019; however, 

the number of stations has increased significantly since 1975. The sudden installation of new stations and 

the increasing number of professional staff to make the observations were administrative responses to the 

need for a more densely distributed climatic network for climate monitoring. Thus, the time series dataset 

structure differs in spatiotemporal coverage, with scarce and spatially distanced stations in the first decades 

and more densely distributed stations in the recent ones (Figure 1). In terms of the temporal structure of the 

datasets, the observations are more densely concentrated over the last four decades (Figure A1 in 

Appendix 1). 
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There are diverse reasons for the gaps, ranging from human-induced errors caused by not reporting 

records or misinterpretation during data transcription (manual stations) or due to malfunctions of 

electronic/mechanic instruments (automatic stations), information transmission, or storage. Furthermore, 

meteorological instruments are occasionally replaced or renewed, introducing temporal discontinuities in 

the series. Frequently these changes are hardly reported in the metadata associated with the stations.  

All these effects result in incomplete series with data gaps ubiquitously distributed throughout them. 

Thus, various studies have proposed different gap-filling approaches to identify an appropriate method that 

is adapted to a target variable. As a result, many gap-filling techniques have been developed, varying in 

complexity and ranging from simple to extremely complex approaches. The simplest methods are based on 

the imputation of data gaps according to the information contained in the same time series, assigning the 

data before or after the gap, or applying the local or the sample average of the series (Pappas et al., 2014; 

Gil-Guirado and Pérez-Morales, 2019). Another technique widely used in the reconstruction of the 

precipitation datasets is the Normal Ratio (Paulhus and Kohler, 1952; Longman et al., 2018;). Others, such 

as the kNN weighted averaging method, consist in generating reference series in a location formed by the 

weighted average of the data observed in neighboring stations (Beguería et al., 2019). Yet other approaches 

consider multiple linear regression models (Mora et al., 2014; Tardivo and Berti, 2014; Serrano-Notivoli et 

al., 2017), the Inverse Distance Weighting algorithm (Bielenki Junior et al., 2018; Lu and Wong, 2008; 

Armanuos et al., 2020) and, more recently, strategies such as tree based methods and machine learning 

algorithms (Körner et al., 2018; Bellido-Jiménez et al., 2021), or the combination of several gap-filling 

methods (Armanuos et al., 2020; Longman et al., 2020).  

Generally, gap-filling approaches focus on minimizing the error (e.g., the Root Mean Square Error, 

RMSE) using a leave-one-out cross-validation method that allows observed and estimated values to be 

compared, or approaches maximizing the goodness of fit in regression models for example through the 

coefficient of determination, R2 (Teegavarapu and Chandramouli, 2005; Vicente-Serrano et al., 2009; Singh 

and Xiaosheng, 2019). 

Given the different available techniques and results, this study examines the effect of four gap-filling 

approaches on the long-term temperature and precipitation trends in the Iberian Peninsula. We assessed the 

trend magnitude and significance, and analyzed the spatiotemporal patterns, focusing on how the different 

gap-filling methods influence the completion of the climatic dataset, the long-term trend, and the 

spatiotemporal patterns. The research applies the Emmental program implemented in the MiraMon software 

(Pons, 2004) to large datasets of month-to-month records of these two major climatic variables in the Iberian 

Peninsula (Spain, Portugal, and Andorra), as described in the methodology section. 

We hypothesize that (i) temperature and precipitation variables will exhibit different gap-filling method 

parametrizations according to their dataset structure and spatiotemporal irregularity (with a denser 

spatiotemporal network for precipitation). (ii) The gap-filling method will influence the magnitude and 

significance of long-term trends in temperature and precipitation according to the method itself and the 

spatiotemporal structure of the datasets. And (iii) the proportion of data gaps in the dataset may condition 

the performance of the gap-filling methods according to the structure of the dataset. 
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2. Materials and methods 

2.1. Study area 

The study area is defined by the Iberian Peninsula, comprising Spain, Portugal, and Andorra, a context 

located in the border region between tropical and semi-tropical climates, which offers ideal conditions to 

evaluate climate change in the northern hemisphere. This context is characterized by a significant climatic 

variability, with dry conditions in the southeast Mediterranean, continental regimes towards the center, and 

humid conditions in the north-west Atlantic context. Furthermore, due to its location, global warming is 

expected to become especially evident in the peninsula due to its sensitivity to climate change. Therefore, 

climate monitoring is essential to adopt appropriate climate change adaptation measures. 

2.2. Climatic datasets 

Datasets of monthly mean temperature (MT) (in d°C) and precipitation (PR) (in dmm) were compiled 

from observations provided by the Spanish (Agencia Estatal de Meteorología (AEMET)) and the Andorran 

(Servei Meteorològic Nacional) meteorological services. Furthermore, additional stations were collected 

from the Sistema Nacional de Informação de Recursos Hídricos (SNIRH) of Portugal. As a result, large 

datasets were generated for each climatic variable. We selected stations with observations spanning from 

January 1950 to December 2019 for each climatic variable, a seventy-year period during which the number 

of observatories and observations significantly varied. Details about the spatial distribution are provided in 

Figure 1 while Figure A1 in Appendix 1 provides details of the temporal distribution of the observations. A 

higher proportion of gaps was concentrated in the first decades of the period. 

 

 

Figure 1. Mean temperature dataset structure: spatiotemporal distribution of observatories in the 

Iberian Peninsula 

 

As shown in Table 1, almost 30 % of the MT dataset corresponds to observations, and 70 % are data 

gaps. Precipitation (PR) improves these proportions, with nearly 35 % observations and 65 % gaps. 

Furthermore, the table shows that if we divide the whole dataset into two periods, P1:1950–1979 and 

P2:1980–1979, the percentage of gaps in P1 (30 years of observations) was more prominent than in P2 (40 

years of observations), with no differences between months. 

The analysis periods could be established according to the year when new stations notably appeared 

(1975) or when the climatic trend was reported to change (1980). In this study we preferred to use the last 

of these to analyze the implications of the methods evaluated in this article, because the general interest in 

the scientific community is more focused on this aspect. 
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Table 1. Structure of the climatic datasets (upper part) and gap distributions by month and 

aggregation of annual observations (lower part). 

Var. Period Stations No. Observ. Completeness No.Gaps Gaps (%) 

MT 

(P1) 1950–1979 1889  256 845  19.59 %  1 054 275  80.41 % 

(P2) 1980–2019 3364  667 427  38.18 %  1 080 733  61.82 % 

(P3) 1950–2019 3642  924 272  30.21 %  2 135 008  69.79 % 

PR 

(P1) 1950–1979 5374  736 581  26.75 %  2 016 699  73.25 % 

(P2) 1980–2019 7158  1 540 808  41.97 %  2 130 232  58.03 % 

(P3) 1950–2019 7648  2 277 389  35.45 %  4 146 931  64.55 % 
 

Var Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann 

MT 

  P1 1 6.71 6.72 6.70 6.69 6.69 6.69 6.72 6.73 6.70 6.70 6.68 6.69 7.20 

P2 5.14 5.12 5.15 5.14 5.14 5.15 5.15 5.19 5.16 5.16 5.13 5.19 6.23 

P3 5.81 5.80 5.81 5.80 5.80 5.81 5.82 5.85 5.82 5.82 5.80 5.83 6.65 

PR 

P1 6.12 6.11 6.09 6.08 6.08 6.10 6.15 6.14 6.10 6.10 6.07 6.10 6.90 

P2 4.81 4.78 4.80 4.78 4.78 4.85 4.90 4.94 4.85 4.81 4.85 4.87 6.37 

P3 5.37 5.35 5.36 5.34 5.34 5.39 5.44 5.45 5.39 5.36 5.37 5.40 6.59 
1 Values represent the split of percentages of gaps by months, while the annual percentage is estimated 

when all month values are available. All percentages in the table are referred to the maximum possible 

observations in each period. 

2.3. Data preparation and filtering 

In an initial exploratory phase, time series were quality controlled by testing data coherence within the 

series and with close neighbors, excluding outliers. During the filling stage, the stations with less than 240 

observations (28.5% of a potential of 70 years x 12 months = 840 observations) only served as data providers 

and were not completed during the filling process (Figure 2). Therefore, we considered the stations with 

more than 20 years of monthly data to evaluate the choice of the filling method in the long-term 

spatiotemporal climatic trend analysis. This threshold was used based on the assumption of filling stations 

with a reasonable level of missing data to be reconstructed. However, further analysis would be required to 

evaluate the repercussions of considering a higher percentage of unfilled stations in the research. Other 

authors have excluded data series with less than 15 years for reconstruction (Vicente-Serrano et al., 2009). 

 

 

Figure 2. Frequency of stations with a number of monthly observations. 
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2.4. Emmental gap-filling approaches 

The Emmental gap filling program is implemented in the MiraMon Geographic Information System 

and Remote Sensing software (Pons, 2004), providing four strategies to fill time series with associated 

parametrization.  

The MONTH method ('M_' suffix in parameters) considers other months of neighbor years of the same 

station. Thus, the main parameter to be set by the user is the maximum number of months of neighbor years 

to the gap—i.e., as a temporal buffer—used to estimate the filling value (M_YESTIM). Then the average or 

the median of the neighbor years (as local approximates) can be used to approximate the gap value.  

The SIMILAR method ('S_' suffix in parameters) explores the most similar series among spatially 

nearest stations. The similarity is computed between pairs of 'n' dates time series formed by the problem 

station and each station of a set of nearest neighbor stations. The main parameters to be set are the number 

of years—i.e., a temporal buffer—from the gap and among the neighbor years (S_YESTIM) and the 

maximum number of nearest neighbor stations—i.e., a spatial buffer—used in the similarity analysis 

(S_N_NEARST). The root-mean-square (RMS) and the R2 can be used to perform the similarity analysis 

between series: in the first case, the station with the lower RMS provides the value for the gap in the problem 

station (S_SUBMET=m), with the possibility of applying a bias correction, computed as the mean of the 

differences between the common values for the years compared between stations (S_SUBMET=o). 

However, in the second case, the station with the strongest correlation, R2 (assuming a minimum R2 

threshold of 0.6) provides the value after applying a linear model fitted with the common values for the 

years compared between the pair of stations (S_SUBMET=r). 

In addition, for the MONTH and SIMILAR methods, an extra parameter controls the minimum number 

of years that will make the gap value estimation reliable (M_MIN_YESTIM and S_MIN_YESTIM), 

conditioning the presence of data gaps in the range of selected values, and hence the continuity and 

contiguity of the selected values around the gap. No gaps are allowed in the temporal selection when 

S_YESTIM = S_MIN_YESTIM.  

The REGRES method ('R_' suffix in parameters) uses the nearest stations with data available in the 

gap year and month at the problem station. A multiple linear regression model is generated with the gap 

value as the dependent variable, regressed considering a set of independent variables. The user defines the 

covariates (VAR_1, VAR_2,...) and the maximum number of nearest neighbor stations (R_N_NEARST) 

included in the regression model. The covariates in this study were the Euclidean distance to the coast (as a 

measure of continentality), the potential solar radiation (evaluated as the annual average following Pons and 

Ninyerola, (2008)), the latitude, the longitude, and the altitude. 

Finally, the IDW method ('I_' suffix in parameters) estimates the gap value by interpolating the 

available data from the nearest stations, considering the Inverse Distance Weighting algorithm. The 

importance of the data from the nearest stations for the interpolated gap is set by the IDW power parameter 

(I_IDW). 

Emmental filling methods have the /TEST parameter, which makes it possible to assess the 

performance of filling methods in time series datasets and to approximate the parametrizations of the 

optimum filling method. In test mode, each real observation in a station is considered a gap and simulated 

according to the rest of the observations and the user's specified parametrizations. According to Table 1, 

http://dx.doi.org/10.21138/GF.773
http://www.geo-focus.org/


 

Padial-Iglesias, M., Pons, X., Serra, P., Ninyerola, M. (2022). Does the gap-filling method influence long-

term (1950–2019) temperature and precipitation trend analyses? GeoFocus (Artículos), Revista Internacional 

de Ciencia y Tecnología de la Información Geográfica, 29, 5–33. https://dx.doi.org/10.21138/GF.773 

 

  www.geofocus.org 

 11 

about one-third of the whole dataset corresponded to available observations, which were used to derive the 

best filling parametrizations applied to fill the real gaps in the dataset, representing approximately two-

thirds of the whole dataset (white spaces in Figure A1 in Appendix 1). Comparing estimated vs. real 

observations allows us to calculate evaluation statistics for each station and the global dataset: error statistics 

(i.e., the minimum, maximum, and mean error, and the global RMSE), the goodness of fit of the residuals 

(the coefficient of determination, R2, in the SIMILAR submethod), as well as the parametrization filling 

capacity performed. Nevertheless, there is a trade-off between minimizing RMSE and the filling capacity 

of the parametrizations, especially in the SIMILAR filling method, and parametrizations with the best 

performance (minimum RMSE) coincide with a relatively low percentage of gaps filled. It is important to 

note that SIMILAR uses parameters to control the temporal and spatial buffer, which can compromise the 

filling capacity according to the parametrizations. This particularity led us to explore an iterative gap-filling 

strategy, in which the best parametrizations obtained in the test mode were applied to fill the gaps iteratively, 

ordered by an increasing RMSE. Moreover, the percentage of gaps filled differed in the test mode (one-third 

of the dataset) from the filling mode (two-thirds of the dataset) due to the dataset structure. Thus, one-third 

of the real observations were used to fill two-thirds of the real gaps, using the parametrizations that minimize 

the RMSE estimated with around one-third of the data. Therefore, in the first stage, several testbeds were 

performed to estimate the optimal parametrizations (minimizing the RMSE) for each filling method, used 

in the second stage to fill the gaps in the climatic datasets. 

2.5. Long-term trend assessment. 

In this approach, the long-term trend was estimated in three temporal periods: two separated subperiods 

(P1: 1950–1979 and P2: 1980–2019), taking into account the splitting points found in previous research 

(Almarza and Luna, 2016; Carnicer et al., 2019), and the whole period (P3: 1950–2019). The magnitude 

and significance of the trend were evaluated monthly (e.g., all January's observations, all February's 

observations), seasonally (e.g., winter determined by averaging: December, January, and February), and 

annually (assessed averaging 12 months, when available for the year). Month-to-month linear regression 

was not considered due to the repercussions of the seasonal component for the magnitude and significance 

of the trend, and thus time series had to be previously de-seasonalized, as was tested. The nonparametric 

Theil-Sen (Sen, 1968; Theil, 1992) estimator was used to derive the trend magnitude, while the Mann-

Kendall (Kendall, 1975; Mann, 1945) test was used to quantify the trend significance. These statistics have 

been used in several case studies (Alemu and Dioha, 2020; Beguería et al., 2019; Gocic and Trajkovic, 

2013; Teegavarapu and Nayak, 2017). The advantages of using nonparametric statistics are that they do not 

require data to be normally distributed, they have low sensitivity to breaks in inhomogeneous series, and 

there are abnormal values (Sayemuzzaman et al., 2014). The Mann-Kendall test null hypothesis assumes 

that there is no trend in the data (random and independently ordered observations), which is tested against 

the alternative hypothesis, i.e., assuming there is a trend in the data. 

The trend magnitude and significance were estimated for each climatic variable, period (e.g., 1950–

1979) and data aggregation (e.g., January, spring, or Annual) for the original and filled series, considering 

at least five available observations. All station trends were considered when filling methods were compared 

without applying significance restrictions. However, before assessing the trends and significance, the time 

series were standardized to compare MT and PR patterns. Lastly, applying significance restrictions made it 

possible to analyze the climatic rate of change in the period. Gap-filling computations were performed with 
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the Emmental program, and the statistics and trend analysis were programmed in R language, version 4.1.1 

(R Core Team, 2022). 

3. Results 

3.1. Assessment of the Filling method parametrization 

The testbeds performed in the test mode provided the best parametrizations, which minimized the 

overall RMSE and were used to fill the gaps. In the MONTH method, we tested the maximum number of 

years (M_YESTIM) from the year of the gap and among the neighbor years in the problem station, combined 

with the parameter (M_MIN_YESTIM) that sets the minimum number of years that makes the estimated 

value reliable. For instance, considering M_YESTIM=10 neighbor years from the year of the gap and 

M_MIN_YESTIM=6 years, means that at least six dates were available to approximate the gap value, while 

four or less were data gaps (e.g., o–o–o–x–x–[simulated gap]–x–o–o–o–x, where 'o' denotes real 

observations and 'x' are gaps). The previous parameters ranged from 5 to 30 neighbor years, considering the 

mean and the median to approximate the gap. The results showed that the local average performed slightly 

better than the local median for MT and PR. Furthermore, the gap-filling capacity of the parametrization 

increased at the expense of degrading the overall RMSE when data gaps were allowed in the selected values 

through the M_MIN_YESTIM parameter (the lack of continuous and contiguous observations to approximate 

the simulated value increases the estimated error). For MT, a minimum RMSE of 14.5 d°C (i.e., 1.45°C) 

was achieved with a M_YESTIM ranging between 10 and 18 years and filling between 72.13 and 86.81 % 

of gaps. For precipitation, a minimum RMSE of 477.7 dmm (i.e., 47.77 mm) was achieved with a 

M_YESTIM of 30 years, filling 62.51% of gaps. This last result suggests that the larger the number of years, 

the lower the RMSE and the gap-filling capacity (Figure 3). It is essential to note that the RMSE 

corresponded to the overall evaluated dataset, with almost a million observations for MT and more than two 

million for PR (Table 1), which justified minimizing the overall dataset RMSE (see the RMSE spatial 

distribution in Figure 7).  

The parametrizations were ordered by increasing RMSE and decreasing temporal buffer (Δ RMSE; 

∇ YESTIM) and used to fill the real gaps iteratively. With this strategy, we preferentially used 

parametrizations providing the lower RMSE (long-length series), reducing the temporal buffer in the later 

iterations. 

 

 

Figure 3. MONTH 'test' mode RMSE and gap-filling results, estimated considering 'n' neighbor 

years from the gap. The period 1950–2019 series is used. 

 

http://dx.doi.org/10.21138/GF.773
http://www.geo-focus.org/


 

Padial-Iglesias, M., Pons, X., Serra, P., Ninyerola, M. (2022). Does the gap-filling method influence long-

term (1950–2019) temperature and precipitation trend analyses? GeoFocus (Artículos), Revista Internacional 

de Ciencia y Tecnología de la Información Geográfica, 29, 5–33. https://dx.doi.org/10.21138/GF.773 

 

  www.geofocus.org 

 13 

In the SIMILAR method, the following parameter combinations were evaluated: S_YESTIM, 

S_MIN_YESTIM (with the same definitions as for the MONTH method), and S_N_NEARST, which sets the 

number of the nearest neighbor stations used to estimate the similarity. We also used three submethods ('r', 

'o' and 'm') to assign the gap value in the problem station. The results showed that the 'r' submethod obtained 

the lowest overall RMSE, followed by 'o' and 'm'. For MT, the lowest RMSE of 7.1 d°C was obtained when 

similarity was evaluated considering long-length series of between 25 and 30 years around the year of the 

gap and within 5 nearest neighbor stations, resolving between 11.51 and 18.23 % of the gaps. The maximum 

filling capacity, over 95.30 %, was achieved when similarity was evaluated considering a short-length series 

of 5 years within 150 nearest stations. For PR, analogous patterns were observed. With a long series of 23 

years around the gap and 5 nearest stations, the overall RMSE was minimized to 207.2 dmm, resolving 

34.72 % of the simulated gaps. The maximum filling capability of 95.47 % was achieved considering short-

length series of 5 years evaluated within the 150 nearest stations. In the upper part of Figure 4, the 

S_N_NEARST is fixed to 5 nearest stations for MT and PR. The RMSE and gap-filling capacity decreased 

when the temporal buffer (S_YESTIM) was increased. In the lower part of the figure, the temporal buffer 

(S_YESTIM) was fixed to 25 years, increasing the RMSE and the gap-filling capacity when the number of 

nearest stations considered to evaluate similarity was increased.  

 

Similarly to the previous MONTH method, parametrizations were ordered by increasing RMSE, 

decreasing the temporal buffer, and increasing the newly added spatial buffer (Δ RMSE; ∇ YESTIM; 
Δ NEARST). Thus, parametrizations with a long-length temporal buffer and near the problem station were 

preferentially used, reducing the temporal and increasing the spatial buffer in the later iterations. During the 

process, it is important to note that short-length stations, tagged as data providers, were iteratively restituted 

to their original form, thus avoiding data propagation through them. 

 

 

Figure 4. SIMILAR 'test' mode RMSE and gap-filling estimates, considering 'n' neighbor years 

from the gap and 'm' nearest stations. Results for the best submethod ('r') are shown. 

 

http://dx.doi.org/10.21138/GF.773
http://www.geo-focus.org/


 

Padial-Iglesias, M., Pons, X., Serra, P., Ninyerola, M. (2022). Does the gap-filling method influence long-

term (1950–2019) temperature and precipitation trend analyses? GeoFocus (Artículos), Revista Internacional 

de Ciencia y Tecnología de la Información Geográfica, 29, 5–33. https://dx.doi.org/10.21138/GF.773 

 

  www.geofocus.org 

 14 

The REGRES method requires the stations to be intersected with a set of predictors to generate a 

multiple linear regression model (the Euclidean distance to the coast, the potential solar radiation, the 

latitude, the longitude, and the altitude, in our case). We tested the model performance considering the 

variables and the R_N_NEARST parameter (same definition as for the SIMILAR method). All variables 

were included in the model, and each predictor value was weighted according to its relative contribution to 

the overall prediction. The least-squares estimator ensures the maximal prediction of the gap to be filled 

from the set of variables used. The main difference with the previous methods was that the filling capacity 

was not compromised, and each parametrization filled 100 % of the gaps. Thus, the method showed an 

asymptotical RMSE decrease, achieving a minimum RMSE of 10.5 d°C for the 45 nearest stations in the 

case of temperature and a RMSE of 236.3 dmm for the 35 nearest stations in the case of PR (Figure 5). 

 

 

Figure 5. REGR 'test' mode RMSE and gap-filling results, estimated considering a set of covariates 

and 'm' nearest stations. 

 

Finally, the IDW method was tested considering all the parameter combinations of a set of exponent 

values (EXP=1,2,3) and the I_N_NEARST parameter (same definition as in SIMILAR). Similarly to REGR, 

the filling capacity of the method was not compromised, as parametrizations filled 100 % of the gaps. 

Therefore, the results showed a minimum RMSE of 13.2 d°C for MT and 221.5 dmm for PR, considering 

parameters of EXP=1 and 7 nearest stations (Figure 6). 

 

 

Figure 6. IDW 'test' mode RMSE and gap-filling results, estimated considering 'x' exponent values 

and 'm' nearest stations. 

 

Figure 7 shows the RMSE spatial distribution. MONTH was the method with the highest overall 

RMSE, followed by IDW, REGR, and SIMILAR for temperature. REGR, and especially IDW, showed 

higher estimated errors in mountain areas, especially in the Iberian Peninsula's Atlantic, center and 

Mediterranean contexts. Likewise, MONTH had the largest overall RMSE for precipitation, and lower 
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differences were observed between IDW, REGR, and SIMILAR. Unexpectedly, the north-west Atlantic 

context showed a higher overall RMSE compared with the Mediterranean. This pattern suggests that areas 

with high precipitation rates derived the larger errors, mainly associated with the high spatial variability of 

the precipitation. 

 

 

Figure 7. RMSE spatial distribution for temperature (upper) and precipitation (lower). 

 

Table 2 shows the summary of the different parametrizations explained. In the ranking, SIMILAR 

clearly provides the best performance for MT even though it exhibits a trade-off between minimizing RMSE 

and the percentage of gaps filled, followed by REGR, IDW, and MONTH. Equally for PR, SIMILAR 

provides the best performance, followed by IDW, REGR, and MONTH. 

 

Table 2. Parameterizations estimated in "test mode”. Three different cases are shown: minimizing 

the overall RMSE (white rows), maximizing the filling percentage (dark gray), and a trade-off 

between the two (light gray). Filled percentages correspond to simulated gaps (see section 2.4.) 

M
O

N
T

H
 

VAR SUBMET YESTIM MIN_YESTIM Filled (%) RMSE (d°C)||(dmm) 

MT 

m 18 18 72.13 14.5 

m 7 7 92.93 14.7 

m 5 5 95.35 14.9 

PR 

m 30 30 62.51 477.7 

m 9 9 93.95 496.0 

m 5 5 96.13 514.2 
 

S
IM

IL
A

R
 VAR SUBMET YESTIM MIN_YESTIM N_NEARST Filled (%) RMSE (d°C)||(dmm) 

MT 

r 30 30 5 11.51 7.1 

r 6 6 70 94.27 8.5 

r 5 5 150 95.35 9.9 

0                200 km

0                200 km
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PR 

r 23 23 5 34.72 207.2 

r 7 7 90 94.60 284.3 

r 5 5 150 95.47 361.8 
 

R
E

G
R

 VAR VARIABLES N_NEARST Filled (%) RMSE (d°C)||(dmm) 

MT Latitude+Longitude+Altitude+ 

Dist.Coast+Solar radiation 

45 100.00 10.5 

PR 35 100.00 236.3 
 

ID
W

 

VAR EXP N_NEARST Filled (%) RMSE (d°C)||(dmm) 

MT 1 7 100.00 13.2 

PR 1 7 100.00 221.5 

3.2. Assessment of the completed datasets 

The parametrizations described were applied to fill the gaps in the climatic datasets. MONTH and 

SIMILAR parametrizations were sorted and used iteratively to fill the climatic datasets. They achieved a 

high level of gap filling, comparable to that obtained through IDW and REGR; detailed lists are in Table 

A3, Appendix 1. The dataset completion almost achieved a complete filling: in the case of MT, the 

percentage was 99.98 % with MONTH and 99.95 % with SIMILAR, while in the case of PR, MONTH and 

SIMILAR completed 100 % of the gaps. Finally, the REGR and IDW methods completed 100 % of the MT 

and PR datasets. 

The iterative gap-filling strategy showed different behaviors (Figure 8). MONTH increased the quantile 

5 % (Q05) and decreased the quantile 95 % (Q95) for both MT and PR. For MT, the mean (MEAN) and the 

standard deviation (SD) decreased. Nevertheless, for PR, the mean showed an irregular pattern, but the 

standard deviation decreased. With SIMILAR, in the case of PR, the extreme quantiles (Q05, Q95) and the 

mean increased while the standard deviation decreased. However, for MT, the extreme quantiles and the 

mean decreased, but the standard deviation showed an irregular pattern. The number of gaps filled (NrOBS) 

increased progressively to a maximum around the 60th iteration, significantly contributing to the first 

iterations (ItOBS) in the filling process. 

3.3. Repercussions of the filling method for climate trend analysis 

The repercussions of the filling methods for long-term trends were evaluated considering stations with 

more than 20 years of original observations. The trend magnitude and significance were assessed using the 

Theil-Sen and Mann-Kendall estimators for the analysis periods. 

According to Figure 9, all methods showed a similar behavior except MONTH, which showed a 

flattening pattern related to the method itself. The method uses the observations in the problem station to 

approximate the gap value by the local mean or median. Due to the lower number of observations in P1, the 

flattening effect was more intense than in P2. The propagation of values during iterations reduced the data 

variance, particularly in P1. This pattern was observed both for MT and PR. This can also be seen in the 

increase in the Q05 and the decrease in the Q95 in the MT and PR values (Figure 8). 

 

http://dx.doi.org/10.21138/GF.773
http://www.geo-focus.org/


 

Padial-Iglesias, M., Pons, X., Serra, P., Ninyerola, M. (2022). Does the gap-filling method influence long-

term (1950–2019) temperature and precipitation trend analyses? GeoFocus (Artículos), Revista Internacional 

de Ciencia y Tecnología de la Información Geográfica, 29, 5–33. https://dx.doi.org/10.21138/GF.773 

 

  www.geofocus.org 

 17 

 

Figure 8. Monitoring the evolution of statistics during the iterative gap-filling. The whole dataset 

(1950–2019) is monitored. On the vertical axis, units are d°C for MT and dmm for PR. 

 

Conversely, long-term trends denoted equal patterns in the other methods, but a higher dispersion 

between methods was observed in P1 (Table A2, Appendix 1). IDW in P1 showed a slightly higher 

dispersion than the other methods (the standard deviation of the trend was ± 0.45 for IDW, ± 0.25 for 

MONTH, ± 0.33 REGR, and ± 0.34 SIMILAR). For PR, larger differences were expected between filling 

methods due to the larger RMSE observed in the test mode. However, all the methods except MONTH 

predict equal climatic trends as in the case of MT. Detailed correlation matrices between the filled datasets 

are shown in Table A1 in Appendix 1. This similar pattern is consistent in all monthly trends. 

Interestingly, when the spatial representation of the trends was analyzed (Figure 10), differences in the 

spatial patterns increased. In the case of MT and during P1, MONTH denoted the same flattening effect 

previously observed. However, IDW systematically showed larger trends in mountain range contexts, 

contrasting with REGR and SIMILAR. Moreover, similarities between IDW and REGR patterns were also 

observed. However, the methods differ from each other most significantly in the months August and 

September. Minor spatial differences between methods in all months were observed during P2. For instance, 

the IDW singular pattern in mountain contexts disappeared. Conversely, for PR, the spatial patterns 

observed in both periods were similar for the different methods, except for MONTH, which also occurred 
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in the case of MT. The lack of a clear trend in the spatial patterns was associated with an alternation between 

wetter and dryer years in the series, which produced a more similar spatiotemporal pattern between methods. 

We analyzed standardized series to compare MT and PR long-term trends. Figure 11 allowed us to 

identify a clear reduction in the dispersion (interquartile range) of the assessed trends between the original 

unfilled series and the SIMILAR selected filled dataset. We used the SIMILAR method for comparisons as 

it had the best performance during the 'test mode' stage. Trend patterns derived from the original and filled 

datasets were consistent between them. The most significant dispersion occurred in P1. When the MT and 

PR trends were compared, the MT denoted the largest dispersion. The trend variability was larger in the 

original series and smaller in the filled series. Moreover, a more significant reduction in the trend variability 

was observed in the entire period. 

3.4. Climatic trend analysis. 

 

We compared long-term trends considering all the stations without significance filter application for 

the whole period (1950–2019). In Table 3, a reduction in the number of stations was observed. For 

temperature, the reduction was less critical, as 71 % were significative trends. However, only 28 % were 

significative for precipitation. Therefore, even though the sign of the trend was equal (with and without the 

application of the significance filter), the magnitude of the trend of the significant series was logically larger. 

Considering the magnitude of the temperature trend, summer was the season with the largest trend 

(0.276 °C/decade), while autumn showed the lowest (0.211 °C/decade). Overall, an increase of 1.45 °C 

occurred in the whole period (0.21 °C/decade), considering the annual tendency. On the other hand, 

precipitation showed different seasonal patterns. A significant decrease was detected for winter 

(-18.746 mm/decade) and spring (-14.363 mm/decade), and an increase for autumn (6.894 mm/decade). 

Overall, figures showed a decrease of -233.748 mm (i.e., -31.964 mm/decade × 7 decades = -233.748 mm) 

in the whole period considering the annual trend (Table 3). 

Temperature patterns can be observed in Figure 11. Thus, winter followed a similar pattern during P1 

and P2, with January and February tending to be warmer, but December did not have a clear tendency. In 

the case of spring and summer, a clear cooling tendency was observed in P1, but this pattern was inverted 

in P2. Regarding autumn, September showed no clear changes between periods, but October significantly 

inverted to a warmer trend in P2. Lastly, November showed a cooling pattern in P1 but was slightly warmer 

during P2. From an annual point of view, P1 showed a clear cooling trend, inverting the trend to a warmer 

one in P2. Finally, considering the whole period, all months showed an overall warming tendency. 

In the case of precipitation, in winter, the patterns observed were similar in both periods, but February 

showed a slight decrease in P2. In spring, a wide variability was observed: March inverted from a negative 

tendency in P1 to a positive one in P2; May showed the opposite pattern, and April showed no clear tendency 

in any case. Summer showed no tendencies in either of the two periods. Autumn had an increasing tendency 

in all months in P2. From an annual point of view, no changes in the trends between periods were observed. 

Finally, no clear increasing or decreasing tendency was reported for any of the months considering the whole 

period. 
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4. Discussion 

Incomplete series and data gaps are common in climatic series and must be filled before the series can 

be analyzed. Gap-filling strategies can resolve this issue in different ways, inducing changes in the 

spatiotemporal structure of the filled dataset and hence in the related analysis (such as in long-term trends 

of climate change). For instance, a well-known effect is a reduction in the variance, so that the extreme 

values of the variable are compressed, which is of decisive importance for the analysis of extreme events 

phenomena (Acero et al., 2014; Teegavarapu and Nayak, 2017). However, despite the importance of using 

gap-filling strategies, the consequences and implications of the methods for trends have been analyzed very 

little considering large climatic datasets, which are mainly affected by structural changes in space and time, 

such as an increasing number of stations over time (Table 1). In this framework, we analyzed the influence 

of four gap-filling methods on long-term (1950–2019) temperature and precipitation trends at monthly, 

seasonal, and annual temporal aggregations in three subperiods (1950–1979, 1980–2019, 1950–2019). 

The gap-filling methods showed similar trend patterns at different temporal aggregation and periods. 

Only MONTH depicted a contrasting pattern related to the filling method itself. The iterative process 

propagated, by averaging, the observations in the stations and reduced the variability of the observed trends 

based on the completed dataset. The decrease in the variance in reconstructed datasets has been extensively 

reported in other research (Serrano-Notivoli et al., 2017; Teegavarapu and Nayak, 2017; Beguería et al., 

2019). Thus, MONTH should be used to fill short-length gaps but not to fill a whole dataset, which seems 

logical. Singh and Xiaosheng (2019) reported filling small gaps using the averaging nearest neighbor, 

reconstructing long-term gridded daily rainfall time series. Nevertheless, for the rest of the gap-filling 

methods, similar patterns in the interquartile range were observed (Figure 9).  

Although none of the gap-filling methods had large repercussions on the long-term trends, there were 

spatial differences, especially in P1 (1950–1979). During this period, the number of stations and 

observations was limited, and the IDW method differs from the others, especially in areas with contrasting 

elevations. Thus, in a temporal context with a limited number of stations in mountain areas, the nearest 

stations had a greater influence than those far apart, even more influenced when considering stations 

geographically more distanced (plain areas) and with more contrasting climatic patterns. The reason why 

the other methods did not show similar patterns in this context has not been identified. 

It is important to note that the long-term trend was determined considering stations with more than 20 

years of data in the whole period. However, the distribution of the observations could be uneven in the 

periods 1950–1979 and 1980–2019 at monthly, seasonal and annual data aggregations. Since five minimum 

observations was the limit considered to assess trends (which could be a considerably low threshold), this 

could have affected the larger trend variability observed in the unfilled series in the period 1950–1979. The 

existence of a larger proportion of short-length time series could lead to the large trend variability. However, 

gap-filled series showed more coherent trends in this period. 

The influence of neighborhood stations was decisive for maximizing the goodness of fit of the models but 

resolved in a wide variability of cases: 35 and 45 predictor stations for REGR, 7 stations in the case of IDW 

and SIMILAR showing a better model performance at shorter distances (even though the gap-filling 

capacity was minimized). This suggests that there is no clear criterium, and testbeds are needed to explore 

each particular situation. Previous research has found specific solutions for approximating this value 

(Tardivo and Berti, 2014). Furthermore, the number of years (i.e., temporal buffer) for similarity 
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comparisons was decisive. Thus, the goodness of fit is maximized as the temporal buffer becomes more 

extensive, but this limits the gap-filling capacity of the MONTH and SIMILAR methods.  

We expected a stronger influence of the number of available observations in the datasets when long-

term trends were compared between periods; however, long-term trend patterns seemed to be hardly 

affected. One possible reason for this concern is how the N_NEARST parameter works. Each station is 

provided with a list in which the rest of the stations in the dataset are ranked by proximity. Thus, a problem 

station always has a candidate nearest station. Filling gaps in periods with a low number of stations and 

observations can be performed—i.e., only if there are observations at the gap date in the neighborhood—

since no geographical restrictions are applied in the models. 

Differences between long-term trends of temperature and precipitation were also expected due to the 

significant differences between the spatiotemporal dataset structures. We found a similar reduction in the 

trend variability associated with MONTH, with minor differences between the other methods. However, a 

larger dispersion in the trend was observed in P1, which is associated with a larger proportion of data gaps 

in the period. 

The iterative gap-filling strategy was useful for applying parametrizations ordered according to the 

patterns observed in the test mode. This was a solution for the exiting trade-off between maximizing model 

performance and the gap-filling capacity. It also allowed us to explore the evolution of the spatiotemporal 

structure of the dataset throughout the process. Additional analyses are necessary for identifying differences 

in filled datasets when parametrizations that are ordered differently are used. Descriptive statistics measures, 

such as minimum, maximum, mean, and extreme quantiles, monitor the dataset structure during the gap-

filling process. 

A question not addressed in this article is the change observed in the spatial pattern of temperature and 

precipitation trends between Portugal and Spain, which are more intensive for precipitation (Figure 9). This 

effect could be attributable to the existence of differences between the meteorological networks and the 

possible differences in the data processing carried out by the different climate agencies. The observed effect 

requires an in-depth analysis to elucidate differences between climatic networks. 

Standardized long-term trend comparisons between unfilled and filled series (SIMILAR) found very 

few differences. Nevertheless, the trend of reducing the variability in temperature and precipitation could 

be seen again. Focusing on precipitation, this variable has a high interannual variability, implying that 

regression methods are not the most suitable for detecting climatic trends. Previous research has reported 

that there is no clear tendency in precipitation and a high spatial and temporal variability (Gonzalez-Hidalgo 

et al., 2009). This suggests that regression methods have limitations for evaluating the differences between 

gap-filling methods for precipitation and, therefore, for comparing gap-filling methods based on long-term 

trends. Thus, it could be of interest to explore other filling approaches. In our analysis, only 28 % of the 

precipitation trends were significant considering a gap-filled dataset with SIMILAR. 

The climate trend in temperature showed a rate of change of 1.45 °C (0.21 °C/decade) in the whole 

period (1950–2019), slightly inferior to the reported in Luna et al. (2011). Summer was the season with the 

strongest warming trend and autumn and winter had the lowest. These results are in line with Bilbao et al. 

(2019), who evaluated trends from nine stations from 1950–2011. During the period 1950–1979, a 

decreasing trend was observed mainly in the spring months, and this pattern was inverted significantly in 

1980–2019. In the case of precipitation, no clear trend was reported from an annual point of view. This has 

also been reported in other studies, which identified no significant trend in the 20th century in annual, 
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seasonal, or monthly data (González-Hidalgo et al., 2010). However, an increase in precipitation for autumn 

and early spring in the period 1980–2019, compared with the period 1950–1979 was observed, which is in 

line with previous studies by Rodriguez-Puebla et al. (1998). In accordance with the authors, a scarcity of 

rain in summer months rains was observed. However, the highest rainfalls were observed in winter in the 

period 1950–1979 (in the northwest part of the Iberian Peninsula), evolving towards lower rainfalls in the 

period 1980–2019 in the entire context. 

Considering our first hypothesis, we found that temperature and precipitation exhibited analogous long-

term trend behaviors with small singularities. Considering our second hypothesis, we found that only the 

MONTH method showed a different behavior from the others in terms of the magnitude and significance of 

trends. Spatial differences between the methods were observed, especially for IDW in the period 1950–

1979. This period is characterized by lower availability of observations and stations. However, gap-filling 

methods were hardly sensitive to the spatiotemporal structure of the data, which can be related to the 

robustness of the applied filling methods. Regarding the third hypothesis, we found that the proportion of 

data gaps has not significantly conditioned the adjustment of the gap-filling methods, but a more significant 

variability of the trends was observed, especially in P1, when the patterns depicted greater spatial diversity.  

Several aspects of our results require additional research to bring light to some considerations arising 

from this work. It is necessary to (i) perform gap-filling approaches in which the temporal structure of the 

gaps (distribution of the gaps regarding their temporal length) is considered, researching the repercussions 

of the gap-filling methods for them. In addition, (ii) the changes that occurred in 1975 at the administrative 

level in the datasets could have had an effect on the long-term trend analyzed; therefore, future studies could 

focus on thoroughly analyzing the repercussions of these changes. 

5. Conclusions 

The following conclusions can be highlighted about the different gap-filling methods used and their 

influence on long-term (1950–2019) temperature and precipitation trends. The methods behave in a similar 

way with regard to IDW, REGR, and SIMILAR, but contrast with MONTH due to its autocompletion 

scheme. The spatialization (maps) of the trends depicts the differences between methods, which cannot be 

seen in the boxplots, where the methods do not significantly differ from each other. Another aspect that 

should be highlighted is that the gap-filling process induced a clear reduction in the variability of the trends. 

To conclude, the gap-filling series has a clear interest for generating continuous surfaces that reduce 

spatiotemporal discontinuities associated with data gaps. However, climate analyses can be affected by the 

aforementioned reduction in the data variability derived from the gap-filling processes, leading to a clear 

tendency towards flattening the derived trends, although they are perhaps more reliable. 
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APPENDIX 1 

 
 

 
Figure A1. The temporal structure of the mean temperature (MT) and precipitation (PR) datasets. 

White spaces refer to data gaps. 
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Table A1. Pearson correlation evaluated for the different methods and periods, beside the related 

plots. Lower values in bold. 
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Table A2. Mean trend and Std. Deviation disaggregated by variable, temporal aggregation, period, 

and filling method. 

Climatic  Temporal  IDW  MONTH  REGR  SIMILAR 

Variable  Aggreg.  P1* P2**  P1 P2  P1 P2  P1 P2 

M
T

 (
d

°C
/y

ea
r 

(°
C

 /
d

ec
ad

e)
) 

 Jan  0.30 ± 0.43 0.19 ± 0.26  0.05 ± 0.25 0.11 ± 0.20  0.24 ± 0.33 0.21 ± 0.24  0.22 ± 0.34 0.19 ± 0.24 

 Feb  0.42 ± 0.45 0.06 ± 0.28  0.08 ± 0.23 0.02 ± 0.22  0.37 ± 0.31 0.09 ± 0.24  0.36 ± 0.33 0.09 ± 0.25 

 Mar  -0.40 ± 0.45 -0.04 ± 0.31  -0.10 ± 0.28 0.01 ± 0.21  -0.44 ± 0.30 -0.01 ± 0.26  -0.37 ± 0.35 0.01 ± 0.26 

 Apr  -0.35 ± 0.45 0.39 ± 0.29  -0.12 ± 0.26 0.25 ± 0.24  -0.37 ± 0.30 0.43 ± 0.23  -0.36 ± 0.34 0.42 ± 0.24 

 May  -0.54 ± 0.47 0.43 ± 0.33  -0.20 ± 0.35 0.24 ± 0.26  -0.56 ± 0.32 0.46 ± 0.27  -0.53 ± 0.37 0.46 ± 0.27 

 Jun  -0.32 ± 0.48 0.34 ± 0.32  -0.10 ± 0.28 0.26 ± 0.28  -0.32 ± 0.34 0.37 ± 0.27  -0.39 ± 0.39 0.38 ± 0.28 

 Jul  -0.10 ± 0.50 0.15 ± 0.35  -0.05 ± 0.26 0.11 ± 0.24  -0.10 ± 0.39 0.17 ± 0.30  -0.21 ± 0.41 0.20 ± 0.30 

 Aug  0.12 ± 0.48 0.28 ± 0.33  0.01 ± 0.25 0.14 ± 0.25  0.11 ± 0.38 0.31 ± 0.28  0.00 ± 0.38 0.31 ± 0.29 

 Sep  -0.01 ± 0.47 0.04 ± 0.29  -0.02 ± 0.28 0.04 ± 0.26  -0.02 ± 0.36 0.06 ± 0.24  -0.10 ± 0.38 0.06 ± 0.25 

 Oct  -0.08 ± 0.43 0.34 ± 0.28  -0.05 ± 0.25 0.21 ± 0.27  -0.13 ± 0.31 0.37 ± 0.23  -0.13 ± 0.34 0.35 ± 0.25 

 Nov  -0.29 ± 0.43 -0.11 ± 0.27  -0.05 ± 0.24 -0.04 ± 0.20  -0.34 ± 0.34 -0.08 ± 0.23  -0.27 ± 0.34 -0.08 ± 0.24 

 Dec  -0.12 ± 0.43 0.01 ± 0.28  0.01 ± 0.25 -0.03 ± 0.20  -0.17 ± 0.34 0.03 ± 0.25  -0.10 ± 0.34 0.02 ± 0.25 

 Win  0.31 ± 0.42 0.10 ± 0.26  0.06 ± 0.22 0.04 ± 0.19  0.26 ± 0.31 0.12 ± 0.23  0.24 ± 0.29 0.11 ± 0.23 

 Spr  -0.44 ± 0.44 0.29 ± 0.29  -0.15 ± 0.28 0.18 ± 0.20  -0.47 ± 0.29 0.33 ± 0.23  -0.43 ± 0.30 0.33 ± 0.22 

 Sum  -0.06 ± 0.47 0.27 ± 0.32  -0.04 ± 0.23 0.18 ± 0.23  -0.07 ± 0.35 0.30 ± 0.27  -0.16 ± 0.33 0.32 ± 0.26 

 Aut  -0.10 ± 0.42 0.09 ± 0.26  -0.04 ± 0.22 0.07 ± 0.20  -0.15 ± 0.30 0.11 ± 0.22  -0.15 ± 0.30 0.11 ± 0.21 

 Ann  -0.12 ± 0.40 0.18 ± 0.26  -0.05 ± 0.20 0.11 ± 0.17  -0.15 ± 0.27 0.20 ± 0.21  -0.16 ± 0.26 0.20 ± 0.20 

P
R

 (
d

m
m

/y
ea

r 
(m

m
/d

ec
ad

e)
) 

 Jan  7.92 ± 13.48 2.70 ± 8.85  1.68 ± 9.08 1.97 ± 5.80  7.52 ± 13.54 2.76 ± 8.84  7.23 ± 12.69 2.52 ± 9.12 

 Feb  10.34 ± 11.17 -0.17 ± 7.89  1.71 ± 9.07 -0.74 ± 4.93  10.24 ± 11.54 -0.13 ± 7.92  9.42 ± 10.93 -0.31 ± 7.78 

 Mar  -7.20 ± 13.59 6.45 ± 4.43  -4.14 ± 9.34 2.57 ± 4.03  -7.24 ± 13.40 6.55 ± 4.60  -6.62 ± 12.85 6.07 ± 4.70 

 Apr  2.41 ± 6.33 -0.99 ± 6.84  -0.04 ± 4.06 -0.41 ± 4.14  2.21 ± 6.22 -0.92 ± 6.74  2.04 ± 6.06 -0.86 ± 6.68 

 May  2.69 ± 7.10 -4.33 ± 6.33  0.30 ± 4.20 -1.06 ± 3.95  2.61 ± 7.10 -4.26 ± 6.10  2.34 ± 6.72 -3.79 ± 5.82 

 Jun  1.42 ± 5.15 -0.21 ± 3.29  -0.35 ± 3.15 0.11 ± 2.23  1.38 ± 5.20 -0.17 ± 3.30  0.77 ± 5.13 -0.07 ± 3.22 

 Jul  0.01 ± 2.17 0.15 ± 2.02  -0.23 ± 1.39 0.14 ± 1.35  -0.13 ± 2.17 0.18 ± 2.05  -0.09 ± 2.30 0.10 ± 1.87 

 Aug  -0.77 ± 3.57 -0.57 ± 2.00  -0.52 ± 2.12 0.10 ± 1.58  -1.06 ± 3.58 -0.53 ± 1.99  -0.88 ± 3.48 -0.37 ± 1.99 

 Sep  -2.92 ± 4.20 -0.72 ± 5.77  -1.22 ± 3.54 0.67 ± 3.94  -3.30 ± 4.17 -0.65 ± 5.76  -3.10 ± 4.36 -0.47 ± 5.35 

 Oct  0.65 ± 9.13 1.46 ± 8.32  0.13 ± 5.77 2.86 ± 6.00  0.16 ± 9.21 1.44 ± 8.33  0.18 ± 8.72 1.88 ± 7.69 

 Nov  -9.27 ± 17.18 -0.21 ± 11.57  -3.98 ± 12.16 0.56 ± 6.12  -9.37 ± 17.28 -0.18 ± 11.49  -8.47 ± 16.47 -0.47 ± 11.59 

 Dec  -4.82 ± 7.46 -7.08 ± 10.92  -2.90 ± 6.09 -1.85 ± 6.49  -5.13 ± 7.83 -7.08 ± 10.97  -4.58 ± 7.41 -6.62 ± 10.60 

 Win  16.88 ± 30.69 -9.31 ± 25.60  2.02 ± 18.29 -3.03 ± 13.84  15.83 ± 31.67 -9.27 ± 26.02  15.24 ± 27.56 -9.08 ± 25.21 

 Spr  -2.07 ± 24.78 1.55 ± 16.72  -3.49 ± 15.09 -0.09 ± 8.68  -2.25 ± 24.68 1.63 ± 16.42  -1.96 ± 22.71 1.43 ± 15.62 

 Sum  0.97 ± 8.65 -1.87 ± 5.73  -0.71 ± 5.39 -0.17 ± 3.62  0.37 ± 8.98 -1.78 ± 5.68  0.44 ± 8.37 -1.46 ± 5.29 

 Aut  -9.90 ± 18.59 -3.36 ± 20.81  -3.42 ± 13.84 2.12 ± 9.58  -10.57 ± 18.09 -3.32 ± 20.80  -9.48 ± 17.86 -2.90 ± 18.91 

 Ann  10.20 ± 54.04 -9.35 ± 63.93  -3.76 ± 33.49 -2.02 ± 30.16  7.60 ± 54.35 -9.00 ± 63.18  9.08 ± 44.14 -8.98 ± 58.73 

P1* refers to 1950–1979, and P2** refers to the 1980–2019 period. 
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Table A3. SIMILAR and MONTH parametrizations used for filling temperature datasets. Only the 

first parametrizations are shown. 

METHOD M_SUBMET M_YESTIM M_MIN_YESTIM % Filled RMSE 

MONTH m 18 18 72.13 14.5 

MONTH m 17 17 73.67 14.5 

MONTH m 16 16 75.13 14.5 

MONTH m 15 15 76.58 14.5 

MONTH m 14 14 78.00 14.5 

MONTH m 13 13 84.04 14.5 

MONTH m 13 12 79.24 14.5 

MONTH m 12 12 86.45 14.5 

MONTH m 12 11 81.60 14.5 

MONTH m 11 11 89.36 14.5 

MONTH m 11 10 83.93 14.5 

MONTH m 10 10 91.84 14.5 

MONTH m 10 9 86.81 14.5 

MONTH m 28 28 52.66 14.6 

MONTH m 27 27 54.83 14.6 

MONTH m 26 26 60.94 14.6 

MONTH m 26 25 56.94 14.6 

METHOD S_SUBMET S_YESTIM S_MIN_YESTIM S_N_NEARST % Filled RMSE 

SIMILAR r 30 30 5 11.51 7.1 

SIMILAR r 29 29 5 12.66 7.1 

SIMILAR r 28 28 5 14.03 7.1 

SIMILAR r 27 27 5 15.39 7.1 

SIMILAR r 26 26 5 16.78 7.1 

SIMILAR r 25 25 5 18.23 7.1 

SIMILAR r 24 24 5 19.66 7.2 

SIMILAR r 23 23 5 21.28 7.2 

SIMILAR r 22 22 5 23.07 7.2 

SIMILAR r 21 21 5 25.02 7.3 

SIMILAR r 20 20 5 26.99 7.3 

SIMILAR r 19 19 5 29.14 7.3 

SIMILAR r 18 18 5 31.18 7.3 

SIMILAR r 29 29 10 21.00 7.4 

SIMILAR r 28 28 10 23.00 7.4 

SIMILAR r 27 27 10 24.98 7.4 

SIMILAR r 26 26 10 53.77 7.4 

SIMILAR r 25 25 10 27.11 7.4 

 

  

http://dx.doi.org/10.21138/GF.773
http://www.geo-focus.org/


 

Padial-Iglesias, M., Pons, X., Serra, P., Ninyerola, M. (2022). Does the gap-filling method influence long-

term (1950–2019) temperature and precipitation trend analyses? GeoFocus (Artículos), Revista Internacional 

de Ciencia y Tecnología de la Información Geográfica, 29, 5–33. https://dx.doi.org/10.21138/GF.773 

 

  www.geofocus.org 

 33 

Table A3 cont. SIMILAR and MONTH parametrizations used for filling the precipitation dataset. 

Only the first parametrizations are shown. 

METHOD M_SUBMET M_YESTIM M_MIN_YESTIM % Filled RMSE 

MONTH m 30 29 66.71 477.6 

MONTH m 30 28 69.99 477.7 

MONTH m 30 30 62.51 477.7 

MONTH m 29 28 68.53 477.7 

MONTH m 29 29 64.53 477.9 

MONTH m 28 28 66.29 478.0 

MONTH m 29 27 71.61 478.2 

MONTH m 28 27 70.13 478.2 

MONTH m 30 27 72.58 478.5 

MONTH m 27 27 67.83 478.5 

MONTH m 27 26 71.60 478.7 

MONTH m 28 26 73.09 478.8 

MONTH m 26 25 72.98 478.8 

MONTH m 27 25 74.48 478.9 

MONTH m 29 26 74.07 479.0 

MONTH m 26 26 69.26 479.0 

MONTH m 30 26 74.76 479.2 

METHOD S_SUBMET S_YESTIM S_MIN_YESTIM S_N_NEARST % Filled RMSE 

SIMILAR r 23 23 5 34.72 207.2 

SIMILAR r 22 22 5 37.11 207.3 

SIMILAR r 24 24 5 32.43 207.4 

SIMILAR r 21 21 5 39.55 207.4 

SIMILAR r 25 25 5 30.68 207.6 

SIMILAR r 20 20 5 42.19 207.8 

SIMILAR r 26 26 5 28.96 208.0 

SIMILAR r 28 28 5 25.61 208.3 

SIMILAR r 19 19 5 44.77 208.3 

SIMILAR r 27 27 5 27.26 208.4 

SIMILAR r 29 29 5 24.00 208.9 

SIMILAR r 18 18 5 47.41 209.3 

SIMILAR r 17 17 5 50.05 209.9 

SIMILAR r 30 30 5 22.37 210.0 

SIMILAR r 16 16 5 52.84 211.2 

SIMILAR r 15 15 5 55.65 212.2 

SIMILAR r 28 28 10 38.07 212.4 

SIMILAR r 27 27 10 40.23 212.5 
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