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ABSTRACT 

 The expansion of cities has significant impacts on economy, ecology, and quality of life, 

among other sectors. This process affects a large fraction of the world’s population and draws 

attention of administrators, investors, and scientists. Simulation is an important tool to understand 

and administer the growth process; however, cities are complex systems, and computer models 

capture only a fraction of their dynamics. Precision is compromised by simplifications as data 

averages, and the difficulty to represent human aspects decisive in the evolution of cities. This study 

tries to mitigate these issues by integrating qualitative information in forecasts computed with the 

model SLEUTH. Simulations were regionalised using a socioeconomic and historical perspective, 

which can be explored with other tools. The method was compared to the traditional approach, and 

the results confirmed a better match between the simulation and the city characteristics. 

 

Keywords: land use and cover change; computational simulation; regionalized simulation; historical 

and sociological characteristics; SLEUTH model. 

 

 

MEJORA DE LA PREDICCIÓN DE LOS USOS DEL SUELO CON MAPAS 

REGIONALIZADOS EN EL MODELO SLEUTH 

 

RESUMEN 

 El crecimiento de las ciudades tiene impactos en la economía, la ecología y la calidad de 

vida, entre otros aspectos, afectando a una gran fracción de la población mundial. La simulación es 

una herramienta importante para comprender y gestionar este proceso; sin embargo, las ciudades 

son sistemas complejos y los modelos computacionales capturan solo una fracción de su dinámica. 

La precisión se ve afectada por la simplificación de los datos, y la dificultad de representar aspectos 

humanos decisivos en la evolución de las ciudades. Este estudio intenta mitigar estos problemas 

integrando información cualitativa en la predicción calculada con el modelo SLEUTH.
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Las simulaciones, que pueden ser exploradas con otras herramientas, se regionalizaron 

utilizando una perspectiva socioeconómica e histórica. El método se comparó con el enfoque 

tradicional, y los resultados confirmaron una mejor coincidencia entre la simulación y las 

características de la ciudad. 

 

Palabras clave:  cambio de usos y cubiertas del suelo; simulación por ordenador; simulación 

regionalizada; características históricas y sociológicas; modelo SLEUTH. 

 

 

1. Introduction 

 

Cities are the stage of the life of most of the world’s population, reaching proportions 

greater than 80 % in some countries (Rodríguez and Meneses 2011, Ratcliffe et al. 2016, United 

Nations 2018). The interactions between a city and its surroundings include a myriad of processes, 

as flows of materials, gas emissions, and waste; production of noise and light pollution; 

modifications to the landscape exemplified by water streams buried under streets, creation of parks 

and artificial lakes. Cities attract the installation of industries and spawn new activities, leading to 

self-sustaining cycles and the transformations of increasingly large areas. This ensemble of 

processes affects the environment and people, and creates challenging problems for public 

administration and private initiatives. The planning of investments and actions in this context entails 

scenarios with conflicting objectives regarding factors as ecology, economy, and quality of life. 

Besides the issue of conflicting objectives, a major obstacle complicates the task of administering 

urban expansion: the difficulty of calculating forecasts. 

The interactions between human activities and land engender a complex system, with 

dynamics that are difficult to characterize. This notion is known in all fields of science, with 

examples as the functioning of live organisms in Biology, the web of effects linking micro and 

macro economic systems, or coupling between thermic, hydraulic and mechanical phenomena in 

systems studied in Physics. Urban sprawl is influenced by very different factors, such as the 

distribution of roads, local topography, social history, and economic activities. If taken individually, 

those different elements encompass phenomena and causal relations that are reasonably understood 

(Santé et al. 2010, Triantakonstantis and Mountrakis 2012, Brown et al. 2012). However, the exact 

evolution of a city is a result of the composition of all those socioeconomic and environmental 

aspects and form systems that are unique (Rocha 2012). Because of its practical importance, the 

study of methods to compute forecasts of land use attracted increasing interest in recent years. This 

field of study makes use of computer tools to process large amounts of data. 

Computer models entered practical use during the Second World War, with the 

development of the Monte-Carlo simulation technique as a major example. Initially explored by 

their capability to do repeated tasks and calculations, computers and programming languages 

rapidly evolved to go beyond pure analytical models as those expressed with differential equations, 

providing scientists with the possibility of describing natural processes in the form of algorithms. 

This ability is explored nowadays to represent the functioning of cities and their internal 

components. However, as the representations get more complex and capture more details, it 

becomes increasingly difficult to assess the quality of a given model. This constitutes a classic 

example of a wicked problem (Ritchey 2013). In other terms, the choice of the mechanisms to be 
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modeled, the level of precision and other requirements cannot be set in advance, as the 

consequences of these decisions on the results are hard to foresee (Rae and Wong 2012). 

Models of land use must draw a compromise between the flexibility needed to represent a 

rich set of situations, and the accuracy expected to reproduce a given scenario, and which may 

involve specific requirements (Sohl and Claggett 2013, Wahyudi 2016). Choosing a minimal set of 

data and parameters that can reliably provide answers is a difficult task, which gives rise to different 

models and a history of research that strives to improve understanding of the problem (Torrens and 

O’Sullivan 2001, Rocha 2012). In the context of city dynamics, the design of a model is based on 

some general guidelines that provide a safe starting ground. For instance, spatial correlation is a 

ubiquitous factor to weight variables and processes; it can be exemplified by the gravity metaphor 

(Fotheringham 1985), or the definition of attraction and repulsion forces that drive the choice for 

future land use (Aguilera et al. 2011). Clusters of activity, especially reflecting the use of land for 

economic activities (industry and commerce) are influenced by transportation costs (Fujita and 

Thisse 1996); in fact, distance to roads and to the city center is a variable frequently found in urban 

models (Santé et al.. 2010). Information about topography is a basic element, with special attention 

to slope (Clarke and Gaydos 1998). Finally, some models try to represent patterns of human 

behavior that influence city dynamics; a technique suited to this end is computational agents (Parker 

et al. 2003). However, representing fine details as individual market operations or entrepreneurial 

initiatives poses serious difficulties concerning model construction and validation, because of 

human unpredictability and lack of data (Crooks et al. 2008, Triantakonstantis and Mountrakis 

2012). Integrating qualitative information and rethinking the role of specialist knowledge in a 

simulation are some alternatives to escape the limitations of a purely mechanical approach (Houet et 

al. 2016, Kok and Verburg 2007). 

The different techniques used to implement computer simulators of Land Use and Cover 

Change (LUCC) affect the translation from world views into code in several ways, but a common 

trait is a difficulty to relate processes that occur at different spatial and time scales (Ménard and 

Marceau 2005, Brown et al. 2012). When a model averages behaviors over large areas or long 

periods, it loses local details that may have special interest to understand the processes occurring in 

different parts of the same city (Jantz et al. 2010). This issue can be seen as a corollary of an 

observation published half a century ago, which became known as Tobler’s first law of Geography: 

"everything is related to everything else, but near things are more related than distant things." 

(Tobler 1970). Another limitation present in analytic and algorithmic techniques is the difficulty to 

integrate abstract, qualitative information into a model; this problem has been called the difference 

between “narrative and number” or “story and simulation” (Kemp-Benedict 2004, Alcamo 2008). 

This suggests the integration of the two views: using the strength of computer models to explore the 

mechanical aspects of the system, and expert intuition to guide the preparation of data and filter and 

interpret the results. 

The objective of the present study was to assess modifications on computations of the 

evolution of land use, produced by combining the capability of the algorithmic model SLEUTH 

with qualitative information not represented in computer code nor captured by statistics and 

databases. Two methods to segment the area of study were compared with calculations for complete 

maps. The city chosen for the study has historical and physical aspects that arguably make 

simulation harder. The hypothesis was that the regional approach would have an impact on the 

forecasts, possibly revealing a more detailed picture. 
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2. Background 
 

One of the first known studies about city structure was conceived in 1826 by the German 

economist Von Thünen, drawing relations between the price of goods, distance to market, and price 

of land (Roth 2019). It was the seed for several models describing city dynamics, which could 

incorporate higher levels of detail with the advent of computers, more than a century later. 

Simulations of traffic and other urban processes gained impulse in North America, following the 

rapid rise of the automobile industry around the 1970 decade (Batty 1976). Approximately, in the 

same period, Geographical Information Systems started to define an area of research on its own 

(Goodchild 2018). As new computational techniques evolved, they could be explored in 

combination with analytic methods. The following examples compare some of the most notable 

approaches and highlight differences. 

Markov Chains assimilate patterns of transitions using probability matrices and have been 

implemented with Artificial Intelligence techniques as Neural Networks (Aaviksoo 1995, Wang and 

Li 2011). Simulators based on stochastic models may operate without inner knowledge about a 

system; in other words, causality chains are not implemented in the code, which reproduces 

phenomena following a black-box paradigm (Rivals and Personnaz 1996). By contrast, 

Econometric Models and System Dynamics are two examples of techniques that decompose the 

phenomenon of city growth in a set of processes, adjusting hypotheses and parameters in order to fit 

reality (Sanders and Sanders 2004, Haase and Schwarz 2009). Such analytic tools benefit from a 

strong mathematical background but generally do not incorporate information as local topography. 

As a result, they can compute total projections such as the number of new houses, but cannot 

represent finer details as the spatial patterns produced during growth. On the other extreme, there 

are Agent Based Models (ABM), which can represent entities and their interactions with a high 

level of detail using computer code (Macal and North 2010, Crooks and Heppenstall 2012), but it is 

difficult to assert that the right aspects of the system were modeled (Filatova and Verburg 2013). 

Cellular Automata (CA) is one of the most used solutions in LUCC simulation 

(Triantakonstantis and Mountrakis 2012). The structure of CA is conceptually simple but can 

accommodate complex models, with characteristics as non-linearity and emergent processes and 

properties, or even chaotic behavior (Wolfram 1984, Rocha 2012). The next section makes an 

overview of Cellular Automata and the simulator SLEUTH used in the present study. 

 

2.1. Cellular Automata and Urban Simulation 

 

Models built with Cellular Automata are composed of a matrix of individual elements, 

which is also typical of Geographical Information Systems (Creighton et al. 1959). Each cell 

operates independently and in parallel, having its own attributes and internal state. Each cell evolves 

in discrete time steps according to rules that may depend on the state of neighbors, parameters and 

other input data (Bandini et al. 2001). This organization makes it equally possible to represent the 

local characteristics of a neighborhood, and the global effects and trends of an entire city. Some 

simulators combine CA with different techniques as Markov Chains (Arsanjani et al. 2013, Rimal et 

al. 2018), Neural Networks (Basse et al. 2014, Ozturk 2015) or Agent-Based Models (Loibl and 

Toetzer 2003, Mustafa et al. 2017, Clarke 2018). 
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Grids of cellular automata are surprisingly powerful devices; a simple matrix of size 10 × 

10 containing Boolean cells can represent 2100 states, an astronomical quantity. While flexibility is a 

desirable feature for any model, it also makes it harder to determine system trajectories. In the case 

of urban sprawl, constraining the search space can help to keep the system under control (Rocha 

2012). Partitioning the map reduces the number of variables and increases the possibility of the 

model adapting to regional characteristics (Shen et al. 2009, Liu et al. 2012). A recent study by 

Dutta and Das (2019) exemplifies the fact that spatial metrics and growth patterns may present 

important differences across areas inside the same agglomeration. 

 

2.2 The SLEUTH model 

 

SLEUTH is one of the most well known Cellular Automata (CA) models in the field, with 

two decades of experiments documented in the literature (Clarke and Gaydos 1998, Clarke 2018). 

Its name is an acronym of the input layers used by the software: Slope, Land use, Excluded areas, 

Urbanization, Transportation and Hillshade. Data are represented as images, and the model requires 

four types of information: 

 Slope, corresponding the topography of the region, derived from a Digital Elevation Model 

(DEM). 

 Excluded areas, which indicate regions as lakes, swamps or parks, that will not be converted 

to urban usage. 

 Road network, representing roads that are significant for the future process of city growth; 

and 

 Urban footprint, with a map that distinguishes different land uses.  

In its basic operation mode, the simulator classifies land into two states: cells are either 

urban or not. The software also allows users to define an arbitrary set of categories of land use, as 

‘industrial’, ‘commerce’ and ‘residential area’; if this feature is activated then a second mechanism 

is added to the execution, based on computational agents. In the present study, it was not enabled.  

Instead of trying to represent internal processes and detailed decision mechanisms that 

occur in a city, as it happens in some urban sprawl models, SLEUTH took a more cautious 

approach and defined four types of growth that should capture land-use changes over time. They are 

combined in the CA grid by means of the sequential execution of rules, which define four growth 

types illustrated in Figure 1. 

 
Figure 1. Types of growth simulated by SLEUTH. 
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Source: the authors. 

Spontaneous growth corresponds to the random conversion of cells, from unused to 

urbanized. In the process of Spread, new occupied areas stem from isolated urban cells. Organic 

growth is a version of Spread where the seed is a group of at least three cells. Different from the 

previous processes that create isolated fragments, organic growth corresponds to the sprawl of 

existing urban areas. The last process is the Road Influenced growth, which spawns new urban cells 

located along roads. All these rules are activated in a non-deterministic fashion, meaning that there 

is a degree of randomness implemented in the algorithms. Simulation results are averaged over 

several runs using a Monte-Carlo approach. 

Execution of the software is controlled by five global parameters, listed on Table 1. 

 

Table 1. SLEUTH parameters. 

Parameter Meaning 

Diffusion Controls generation of new cells scattered on the matrix and along 

roads 

Bread Adjusts the probability of a new urban fragment being expanded 

Spread Controls the organic process of expansion  

Slope Adjusts overall sensitivity of the model to steep terrains 

Road Gravity Affects how roads pull urbanization 

Source: the authors, from software documentation. 

 

Calibration is the first execution mode of Sleuth. Adjusting parameters is a crucial task in 

the application of a model, being affected by the quality of information available and the size of the 

search space (Clarke 2004, Amujal 2015, Chen et al. 2017). This process can combine algorithmic 

procedures with expert knowledge, in order to tune configurations and steer the simulation 

trajectory or help select the most probable scenarios (Volkery et al. 2008, Houet et al. 2016, 

Gounaridis et al. 2019). In SLEUTH this task is performed iteratively by the user, based on logs of 

execution that collect several statistics. The metric chosen to guide the calibration, in most studies 

using SLEUTH, is Lee-Sallee (Lee and Sallee 1970). It compares two binary images: the output of a 

run of the simulator and an actual map. It is calculated as a ratio A/B, where A is the count of urban 

pixels present at the same coordinates (x,y) on both images (a Boolean intersection); and B is the 

count of urban pixels on both images, minus A (a Boolean union). The higher the value of the 

metric, the closer the agreement between the images. 

The SLEUTH model has a global character, where every cell follows the same algorithms 

that are configured by the set of five parameters. This strategy is not unusual and can be found in 

many simulators; however, it may limit precision since local characteristics tend to be averaged and 

diluted by statistics and algorithms dealing with large areas (Shen et al. 2009, Liu et al. 2012, 

Moghadam et al. 2018). Some general approaches to overcome this issue consists of using patches 

in place of cells (Li et al. 2017, Chen et al. 2017, Moghadam et al. 2018), incorporating qualitative 

input directly into the model (Houet et al. 2016), or using a territorial division guided by metrics 

(Kazemzadeh-Zow et al. 2017) or cluster analysis (Jantz et al. 2010). There are some studies for the 

specific case of SLEUTH. Houet et al. (2016) modified the software adding a layer of qualitative 

information. In the study of Jantz et al. (2010) maps were divided using an automatic procedure, 

based on k-means cluster analysis performed with eleven variables. Mahiny and Clark (2012) 

computed an urbanization suitability layer using a mathematical analysis of fifteen factors. The 

http://www.geo-focus.org/
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present study adopts the view of combining context analysis and algorithmic model but doing this 

outside of the software (see for instance Kemp-Benedict (2004)). 

 

3. Materials and Methods 
 

3.1 Study area 

 

Ponta Grossa is located in the south of Brazil, in the Paraná State, a federative unit of the 

country. It stands in a region of irregular topography, near hill ranges that separate the Atlantic 

coast from inland; its approximate location is shown in Figure 2. It occupies approximately 

2054 km2 and the last estimates for 2019 indicated a population of 351 736 inhabitants, a population 

density of 170 hab/km2. 

 
Figure 2. Localization of Ponta Grossa. 

Source: the authors. 

 

The initial settlement was established by herdsmen that crossed the region; records from the 

beginning of the XIX century estimate a population of 1330 citizens and 331 slaves in 1823 

(Gonçalves and Pinto 1983). Incentives from the brazilian government attracted European settlers, 

and in 1887 more than 2000 immigrants were received in the region (Kubaski 2015). The arrival of 

a railroad in 1894 and the strategical position of Ponta Grossa at crossroads linking important cities 

were motors for its development along of the XIX century. Its commercial projection declined 

during the XX century with the advent of coffee exploitations in other cities, and subsequently the 

growth of Curitiba, the capital of Paraná State located between Ponta Grossa and the coast. The 

evolution of the population is shown in Figure 3, along with an approximation of the urban area 

taken from the images used in the study. A slight decrease in the speed of city expansion occurs 

around 2005-2008 and 2014-2017. Population growth exhibits a similar trend and overall slowed 

down in the last decade (IBGE 2019). 
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Figure 3. Population statistics and count of urban pixels. 

Source: count of pixels extracted from input maps; population from IBGE (2019). 

 

Ponta Grossa is the economic center of a region known as ‘Campos Gerais’ composed of 13 

cities and approximately 760 000 inhabitants. The Gross Domestic Product (GDP) per capita of the 

city was approximately R$ 42 000.00 in 2017 (US$ 10 200.00, with values from January/2020), 

placing the city at position 530 out of 5570 localities in Brazil (IBGE 2019). The service sector and 

agroindustry are the two most important sources of revenue (Ponta Grossa 2018). The value of the 

GDP Human Development Index (HDI) assessed in 2010 was 0.763, corresponding to the position 

320 in the country and qualitatively classified as high (IBGE 2019). Despite the favorable IDH 

indicator, important social disparities still remain. The value of the GINI index calculated for 2010 

is 0.54, with 21 % of the population having a salary below the minimum reference value and half of 

the young adults not having completed secondary education. In 2018, more than 6000 irregular 

houses (non-authorized by the municipal government) were identified; the poorest ones were built 

on valleys bottoms (Ponta Grossa 2018). 

Compared to other cities of Paraná, Ponta Grossa has a relatively complex topography and 

the territory was occupied over the years in a rather disorganized fashion, without effective urban 

guidelines (Silva 2013). The lack of infrastructures as viaducts frequently requires people to cover 

relatively long paths to join destinations that are not far at a straight distance. This also affects users 

of public transports, sometimes obliged to change buses up to three times (economic interests 

probably play also a role in this situation). These characteristics create a degree of isolation between 

regions, interfering with decisions regarding the choice of residence, school, work, and leisure 

activities. 

Cities in Brazil are traditionally divided into neighborhoods known as ‘bairros’. These 

divisions are related to the Portuguese freguesias but do not have local administration. They are 

considered nonetheless in official statistics (health, security), are used in public government 

decisions (placement of schools, transportation, health centres), and are recognized by postal codes. 

Such neighborhoods emerge with the development of a city and are shaped by historical factors. For 

instance, in Ponta Grossa the neighbourhood known as ’Oficinas’ (Portuguese for ’machine shop’) 

concentrated services for the railroad that crosses the city, ‘Olarias’ had brick factories operating 

coal furnaces, while ’Nova Russia’ was the home region for many immigrants from East Europe. 

Nowadays, Oficinas still concentrates commercial activities such as auto part shops, car dealerships 

and auto repair shops. Olarias, a neighborhood not especially sought for residences in the past, 

http://www.geo-focus.org/
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nowadays represents a mixed market, with gated communities but also areas with very modest 

houses. Finally, ‘Jardim América’ is known for its concentration of high-valued properties.  

 

3.2 Data gathering and pre-processing 

 

Information had to be gathered from several sources to recover historical data. This 

includes IPLAN, a division of City Hall responsible for Urban Planning; IBGE, Instituto Brasileiro 

de Geografia e Estatística; satellite images from INPE, Instituto Nacional de Pesquisas Espaciais; 

the Aster Global DEM dataset, from NASA/METI; and Google Earth. 

Classification of land use from remote sensing data is generally performed by applying 

automated procedures (Berberoglu and Akin 2009, Rozenstein and Karnielli 2011). These processes 

are harmed by obstacles as noise, insufficient or low-quality data, and introduction of errors with 

procedures as resampling and image correction (Manandhar et al 2009). In this study, city limits 

were visually identified in satellite photos and the corresponding urban footprints were manually 

painted. A sequence of black and white images was produced, spanning the period 1984 to 2017 in 

intervals of 3 years. Most studies presented in the literature employ larger intervals, but the use of a 

denser dataset was expected to leave fewer gaps to be guessed by the simulator, and SLEUTH 

documentation does not put a limit on the sampling rate. 

The exclusion layer was obtained from IPLAN; it identifies preservation areas as a State 

Park (Vila Velha), which must be ignored by the growth processes implemented in the simulator. A 

roadmap for 2017 was extracted from the OpenStreetView database with the software Quantum 

GIS. Layers for precedent maps of 1984 and 1996 were created by hand, by inspecting satellite 

images and removing major roads that were not present at those years. Using a color-code defined 

by SLEUTH, roads connecting adjacent cities were marked with the value 100, main avenues of the 

city with value 50, and other important streets with the value 25. Slope and hillshade were obtained 

by processing the Data Elevation Model with Quantum GIS. 

The final images used in the study had 1242 x 1339 pixels, corresponding to a scale of 30 

meters and the same resolution was used in all the input layers. SLEUTH does not impose a 

minimal resolution, and the value chosen coincide with many studies reported in the literature 

(Triantakonstantis and Mountrakis 2012). A group of 3x3 cells in the present case is roughly 

equivalent to one city block. Examples of three city footprints and other images used as input to the 

software are shown in Figure 4. 
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Figure 4. Some Input Layers used in the study. 

Source: the authors. 

 

3.3 Design of the experiments 

 

Ponta Grossa has 14 neighborhoods (bairros), a number judged excessive to divide the 

map; the study sought to verify how local tendencies would be captured by the computational 

model, and not get to the extreme of simulating ensembles of city blocks. Thus, some criteria were 

initially defined in order to guide the partitioning. First, the division would have a low number of 

segments, of the order of four. A highway crossing the city and important avenues that function as 

axis that structure the urban morphology served as an initial reference. The combination of the 

transportation network and geographical features as valleys acts as barriers to locomotion, creating 

patterns that would not exist if the city had a flat topography. For instance, the tendency to avoid 

living far from work is stronger in Ponta Grossa than in Maringá, a city in the State of Paraná with a 

similar population and economy. Finally, banks, stores, pharmacies, and other amenities occur 

replicated in areas across the city of Ponta Grossa, allowing them to function more or less 

independently. These considerations guided the analysis and the city was divided into three regions 

of approximately equal occupation, shown in Figure 5. 
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Figure 5. City map subdivisions. 

Source: the authors. 

 

Region 2 shown in Figure 5 is markedly industrial. It encompasses the neighborhoods of 

Oficinas and Olarias, and the largest industrial zone of the city. Regions 1 and 3 are more 

diversified, with commerce, residential areas, two public universities and one of the factories of 

BRF S.A., a Brazilian food producer among the greatest in the World. Sectors of service and 

commerce concentrate on the junction of the three regions. Maps prepared for the simulations 

included an overlap between regions, in order to permit interactions to occur from one partition to 

another. Three simulation scenarios were defined: 

 C (complete): the maps encompass the whole city. 

 S (sliced): layers were edited to remove parts of the city. 

 E (excluded): the exclusion layer was used to mask removed regions. 

 

The scenarios S and E, although in principle thought to be equivalent, were designed to 

confirm simulation results for each region using two experiments. The first phase of each 

experiment is the calibration to obtain the five model coefficients. These values have been dubbed 

as SLEUTH DNA (Gazulis and Clarke 2006) and they describe, under the model perspective, the 

major processes that drive the growth of a city. For instance, differences in concentration of 

commerce and residential settings might correspond to different ’DNA’ types under the simulated 

perspective. 

Experiments were organized around two series, as shown in Figure 6. Using data up to 2014 

a forecast was computed for 2017, allowing the validation of the experiments with available 

information. This was performed by comparing growth maps and actual images regarding two 

aspects: the distribution of new pixels across the output map should match areas that developed in 

Ponta Grossa; and the count of urban pixels in the projections should approximate the new area. 

The second test used the complete time series to obtain a forecast for 2020. The calculations were 

performed with the seven different setups (C, S1..3, E1..3), for a total of fourteen sets of results. 

Each of these sets involved four rounds of calibration, following the procedure recommended in 

SLEUTH documentation. In the first step, known as ‘coarse’, images had one-quarter of the full 

size. This was followed by the ‘fine’ calibration, with input files half the full size, using parameters 
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chosen from the previous step according to the Lee Sallee metric. In the third phase, images had full 

size (1242 × 1339 pixels). In a final process, named ‘forecasting calibration’, SLEUTH applies 

heuristics to modify the coefficients, responding to periods of sudden growth or stagnation. Each 

experiment is executed by the software several times, using an internal Monte Carlo algorithm to 

average values and compute, for each pixel, the probability of state change. 

 

 
 

Figure 6. Organization of the experiments. 
Source: the authors. 

 

Source code was downloaded and compiled from the project site (National Center for 

Geographic Information and Analysis, USA) and, during the first runs, an internal error halted the 

experiments. The overflow of a variable was detected thanks to memory checks enforced by the 

compiler (gcc release 7) in approximately 20 000 lines of code. The error affects a memory area 

known as the top of stack and should cause no consequences for users of old compilers. 

 

4. Results 
 

4.1 The calibration phase 

 

The coefficients obtained with the calibration processes provide a general picture of how 

the model tries to assimilate the city of Ponta Grossa. Values from the final phase of the calibration 

are shown in Figure 7. The letters indicate the simulation scenario (complete, sliced, excluded) and 

numbers identify each of the 3 regions. 

 

 
Figure 7. Parameters obtained in Calibration. 

Source: the authors, from simulation results. 
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Values for the parameter Diffusion were very low and suggest that the emergence of new 

urban cells rarely occurs far from the city center. Breed, associated with the apparition of new urban 

‘islands’ showed the same tendency. Spread, associated with the so called organic growth, had 

consistently high values; it was the most significant coefficient in the experiments. This trend 

represents the fact that the boundaries of the city advance over empty areas and represent most of 

the new urban blocks. The coefficient Slope presented mixed results; the values found during 

calibration do not follow any clear pattern; in scenario C, terrain topology showed little impact on 

results; in S1, this aspect was even less significant, with values near 0. By contrast, in S2 Slope 

presented high values, while in E2 - the same geographical region - results were incongruous: 

higher in 2014 and lower in 2017. S3 and E3 also showed erratic changes. 

In principle, these results might be an indication of the model struggling with the erratic 

occupation of land. Compared to economic forces, topography played a minor role in the 

determination of city sprawl. Historically, patches of flat terrain were prioritized for agriculture, 

and, as a matter of fact, the city center lies in a region of irregular topography. Figure 8 illustrates 

part of the intricate boundaries between urban and rural areas in the city, still present today. 

 

 
Figure 8. Agricultural land around urban areas in Ponta Grossa. 

Source: Google Earth. 

 

The last coefficient, Road Gravity, did not have a significant influence in most of the 

experiments, with the notable exception of scenarios S2 and E2, where it attained values above 50. 

This region developed along a boulevard that leaves the city towards Curitiba, the capital of the 

State of Paraná. The State Highway was a natural choice for the construction of factories and 

warehouses, and in the 1980 decade, the municipality defined an Industrial Sector in the region, 

with tax incentives. The values for all the coefficients are obtained and refined in three rounds of 

calibration, following the instructions in the documentation of the software. At this point, it is 

interesting to observe the LeeSalle metric, as it is the criteria guiding the selection of values and 

shows the overall precision of the simulation before the forecasts are calculated. Plots of the values 

of the metric along the process are shown in Figure 9. 
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Figure 9. Lee-Salee Metric. 

Source: the authors, from simulation results. 

 

Most of the curves are decrescent and converge to similar results. The decreasing values of 

the metrics are somewhat expected since higher levels of detail make it harder for the simulator to 

match the city evolution. Scenario S3 consistently had the best output, followed by S1. The lower 

values were found in the three type-E setups, and the simulation of the complete city occupied an 

intermediate position among all tested scenarios. 

 

4.2 Forecasts of land use 

 

SLEUTH generates output in the form of data tables and images with color-coded pixels 

that represent the probability of new urban areas. These probabilities are obtained from the Monte 

Carlo approach. All simulations generated relatively modest growth, but followed the tendencies 

found in the calibration. The results are summarized in Table 2. 

 

Table 2. Number of generated pixels in forecast results. 

Setup C E1 E2 E3 S1 S2 S3 

New pixels 578 206 266 180 285 470 184 

Proportion 100 % 31 % 40 % 27 % 30 % 50 % 19 % 

Source: the authors, from simulation results. 

 

Column C of Table 2 corresponds to the complete approach, therefore the proportion of 

new pixels is equal to 100 %. The remaining columns show the distribution of pixels and the 

relative proportion found in each of the three regions of the map. The sum of pixels in scenarios S 

and E is slightly greater than in C, because of the small overlap between regions. 

By evaluating the accuracy of projections with respect to the Lee-Salle metric, the best 

results were those produced with the S approach. The region 2 of the map dominates the expansion, 

and this is in good agreement with the dynamics observed in the city. New gated communities and 

residential areas have been projected along the axis that cuts this region, which is impelled by the 

concentration of industrial activity. 

During simulation SLEUTH adjusts coefficients, seeking to match periods where city 

expansion accelerates or slows down (Clarke and Gaydos 1998). The modifications are applied 

depending on the rate of simulated growth and parameters from a configuration file; this can be 

found in the code, in the subroutine coeff_SelfModication [sic]. Log files from the experiments 
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registered that all coefficients except Slope were reduced, and this happened along the whole 

simulation period beginning in 1984. This behavior of the software is in accordance with the 

tendency followed by the city, as shown in Figure 10. 

 

 
Figure 10. Annual percentage of city growth. 

Source: IBGE (2019). 

 

The plot in Figure 10 represents the percentage of growth according to the series of city 

images; the dotted line is a linear regression of the data. The growth deceleration that happens in the 

city was somewhat over-emphasized by the simulations.  

The SLEUTH DNA of the seven scenarios was compared with the results obtained in the 

simulation of other 21 cities (Gazulis and Clarke 2006, Pramanik and Stathakis 2016). The 

Euclidean distance between 5-dimensional points was computed for all cities in the comparison and 

the seven simulation approaches. The best matches found are shown in Table 3. 

Distinctive characteristics in the evolution of land use were captured by the model and 

reflected in the set of coefficients of the corresponding input maps. Two regions exhibited 

noticeable patterns; they were region 1, which shows similarity with the SLEUTH DNA of Chian 

Mai; and region 3, with coefficients close to those found for Houston. These regions had the best 

values of the Lee-Sallee metric in the S approach. Region 2, which presented the most pronounced 

variations in growth, also showed mixed results with regard to the coefficients. Despite fluctuations 

of the coefficient Road Gravity, the set of values found in the projections of 2014 and 2017 

confirms the importance of the transportation network in region 2. 

 

Table 3. SLEUTH DNA of each simulated region. 

Simulation scenario Corresponding City Euclidean Distance 

C Dhaka City (Bangladesh) 27.5 

E1 Chian Mai (China) 22.9 

S1 Chian Mai (China) 26 

E2 Dhaka City (Bangladesh) 22.7 

S2 Houston (USA) 16.7 

E3 Houston (USA) 32.4 

S3 Houston (USA) 19.1 

Source: the authors, from simulation results. 
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The simulation using the segmented approach was able to distinguish the dynamics of 

regions and adapt to different patterns of land use. Regions 1 and 3, in particular, consistently 

presented coefficients similar to other cities previously analyzed with the SLEUTH model. The 

results also validate the procedure that guided the partitioning, involving the analysis of the city 

under historical and social perspectives to define how the map was divided; from that point, the 

simulation is executed in a rather mechanical manner, found in many studies of city sprawl. The 

results can be contrasted with similar research using the SLEUTH model. In the study of Houet et 

al. (2016), the global character of the model was kept intact; this means that coefficients are still 

averaged over the entire regions being simulated, as in scenario C of the present work. In the study 

of Jantz et al. (2010) maps were divided using an automatic procedure; however, this process 

requires additional tools and relies on numerical data that in principle does not reflect historic and 

social elements as those considered in the present paper. In Mahiny and Clark (2012), a suitability 

layer reflects characteristics such as proximity to rivers, forest density, and climate classification; 

their main interest was on sustainable land management and the method requires additional analytic 

data. 

  

 

5. Conclusions 
 

The results of the study confirmed the initial hypothesis, and regionalized simulations 

showed a better calibration of the model. This was indeed observed in the values of the Lee-Sallee 

metric, especially for the approach using segmented maps. The use of both a segmented map and 

the exclusion layer (respectively scenarios S and E) was initially thought as a simple validation test 

and was expected to give similar results; as the experiments unfolded, it became clear that this 

assumption did not hold and the reasons had to be examined. 

Some fluctuation of coefficients can be regarded as normal in view of the nondeterministic 

character of the simulation. However, coefficients as Slope and Road Gravity presented significant 

differences between scenarios S and E. Inspecting the code of the software it was ascertained that 

the exclusion layer does not affect the calculation of Lee-Salee metric, although it effectively 

disables the urbanization process. The scenarios E1, E2, and E3 produced the poorest results. 

According to the logic implemented in the software, during execution with these scenarios a single 

region Ek was modified but the calibration metric was computed for the entire set E1∪E2∪E3. The 

extent to which results can be affected by this logic of the algorithms is difficult to assess. For 

instance, while the cellular automata model was able to prioritize organic growth, mixed values 

were obtained for coefficients in region 2. This point might deserve specific tests. 

The time interval between images, 3 years, was shorter than other experiments in the 

literature; an additional test of the simulator was conducted using a larger interval of 6 years and 

running only the initial phases of calibration with complete maps. The Lee-Salee metric attained 

0.7, but once again the reasons for this behavior of the simulator are hard to determine with 

certitude; a possible explanation is the fact that removing 2 out of 3 images of the series, erratic 

growth patterns became less pronounced in the input and this had a positive impact on the 

calculations. One possible study would be to check the simulator sensitivity to random input 

patterns. A few different metrics of urban sprawl have been evaluated in the context of SLEUTH 

studies. Interestingly, metrics as Lee-Salee, recommended in the documentation of the software, are 
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only a by-product of model execution, not used as a criterion to guide the simulated trajectory. 

There is instead a set of heuristics in the code which depend on statistics as the rate of growth. 

The city of Ponta Grossa, chosen for this study, presents some distinctive characteristics. 

Historical changes of land use occur in disorganized patterns, as a consequence of municipal 

legislation being weakly enforced and social and economical forces that exerted a considerable 

influence on the territory. The concentration of certain activities in specific zones, during the XIX 

century, can still be perceived in the current distribution of residential and commercial areas. The 

urbanization of the city also challenges the logic associated with topography, especially as slums 

and irregular residences advance over areas that should resist this kind of land use. This 

phenomenon can be observed in other Brazilian cities and in the present case, it contributed to the 

rise of irregular morphology and the evolution of the transportation network with irregular layouts. 

The increasing amount of available data, represented by official municipal databases, 

collaborative projects as WikiMapia and OpenStreetMaps, and even private services as iFood or 

Uber, suggests new avenues of research. One example would be to partition maps according to 

displacement of people and goods, inferred from sources as Waze, Uber and iFood. Combining 

other data sources, as financial, and the possibility of full automation of the task, are potential 

research questions. The concept of DNA might be explored further. For instance, it might be 

derived from the analysis of current data, instead of being the result of the calibration of the 

simulation; this way it could guide map segmentation. All those situations might benefit from 

techniques from fields as big data and data mining. 
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