Improving Forecasts of Land Use with regionalized maps in the SLEUTH model

Ellen Cristina Wolf Roth, André Koscianski


The expansion of cities has significant impacts on economy, ecology, and quality of life, among other sectors. This process affects a large fraction of the world’s population and draws attention of administrators, investors, and scientists. Simulation is an important tool to understand and administer the growth process; however, cities are complex systems, and computer models capture only a fraction of their dynamics. Precision is compromised by simplifications as data averages, and the difficulty to represent human aspects decisive in the evolution of cities. This study tries to mitigate these issues by integrating qualitative information in forecasts computed with the model SLEUTH. Simulations were regionalised using a socioeconomic and historical perspective, which can be explored with other tools. The method was compared to the traditional approach, and the results confirmed a better match between the simulation and the city characteristics.

Palabras clave

land use and cover change; computational simulation; regionalized simulation; historical and sociological characteristics; SLEUTH model

Texto completo:



Aguilera, F., Valenzuela, L. M., & Botequilha-Leitão, A. (2011). Landscape metrics in the analysis of urban land use patterns: A case study in a Spanish metropolitan area. Landscape and Urban Planning, 99(3-4), 226-238.

Amujal, C. (2015). Using cellular automata to analyze and model urban growth: a case study of the greater Copenhagen area from 1990 to 2010 (Master’s thesis). Aalborg University, Denmark.

Arsanjani J. J. , Helbich M., Kainz W., & Boloorani A. D. (2013, April). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21: 265-275.

Bandini S., Mauri G., & Serra R. (2001). Cellular automata: From a theoretical parallel computational model to its application to complex systems. Parallel Computing, 25(5), 163–168.

Basse, R. M., Omrani, H., Charif, O., Gerber, P., & Bódis, K. (2014, September). Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Applied Geography, 53, 160-171.

Berberoglu, S., & Akin, A. (2009). Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. International Journal of Applied Earth Observation and Geoinformation, 11(1), 46-53.

Bhatta B., Saraswati S., & Bandyopadhyay D. (2010). Urban sprawl measurement from remote sensing data. Applied Geography, 30(4), 731–740.

Brown, D. G., Walker, R., Manson, S., & Seto, K. (2012). Modeling land use and land cover change. In. Gutman, G., Janetos, A. C., Justice, C. O., Moran, E. F., Mustard, J. F., Rindfuss ... Cochrane, M. A. Land Change Science, 395–409. Dordrecht: Springer.

Cai, J., Huang, B. & Song, Y. (2017, December). Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sensing of Environment, 202, 210-221.

Chen, Y., Liu, X., & Li, X. (2017). Calibrating a Land Parcel Cellular Automaton (LP-CA) for urban growth simulation based on ensemble learning. International Journal of Geographical Information Science, 31(12), 2480-2504.

Clarke K. C. (2004). Toward geocomputational honesty in urban modeling. Atkinson P., Foody G. M. & Darby F. W. S. E. (Eds). Geodynamics (pp. 215–232), Boca Raton: CRC Press.

Clarke K. C., & Gaydos L. J. (1998). Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7), 699–714.

Clarke, K. C. (2018). Cellular automata and agent-based models. Handbook of regional science (pp. 1-16). Berlin Heidelberg: Springer.

Clarke, K. C. (2019). Mathematical Foundations of Cellular Automata and Complexity Theory. In.: D'Acci, L. The Mathematics of Urban Morphology. Cham, Switzerland: Springer International Publishing.

Crooks, A., Castle, C., & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6), 417-430.

D'ambrosio, D., Di Gregorio, S., Gabriele, S., & Gaudio, R. (2001). A cellular automata model for soil erosion by water. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(1), 33-39.

Dietzel C., & Clarke K. C. (2016). The effect of disaggregating land use categories in cellular automata during model calibration and forecasting. Computers, Environment and Urban Systems, 30(1), 78–101.

Dutta, I. & Das, A. (2019). Exploring the dynamics of urban sprawl using geo-spatial indices: a study of English Bazar Urban Agglomeration, West Bengal. Applied Geomatics, 11(3), 1-18.

Fotheringham, A. S. (1985). Spatial competition and agglomeration in urban modelling. Environment and planning A, 17(2), 213-230.

Fujita, M., & Thisse, J. F. (1996). Economics of agglomeration. Journal of the Japanese and international economies, 10(4), 339-378.

Gazulis N., & Clarke K. C. (2006). Exploring the DNA of our regions: Classification of outputs from the SLEUTH model. Yacoubi S. E., Chopard B., & Bandini S. (Eds). Cellular Automata. ACRI 2006. Lecture Notes in Computer Science, vol 4173 (pp. 462–471). Berlin: Springer.

Gonçalves, M. A. C., & Pinto, E. A. (1983). Ponta Grossa-um século de vida (1823-1923). [Ponta Grossa - one century of life (1823-1923).]. Ponta Grossa: Ed. Kugler.

Gounaridis, D., Chorianopoulos, I., Symeonakis, E., & Koukoulas, S. (2019). A Random Forest-Cellular Automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. Science of the Total Environment, 646(1), 320-335.

Houet T., Aguejdad R., Doukari O., Battaia G., & Clarke K. C. (2016). Description and validation of a non path-dependent model for projecting contrasting urban growth futures. Cybergeo: European Journal of Geography. Retrieved from

IBGE Instituto Brasileiro de Geografia e Estatística (2019). SIDRA, Sistema IBGE de Recuperação Automática [SIDRA, IBGE System for Automatic Recovering]. Retrieved from

Kazemzadeh-Zow A., Shahraki, S. Z., Salvati L., & Samani N. N. (2017). A spatial zoning approach to calibrate and validate urban growth models. International Journal of Geographical Information Science, 31(4), 763-782.

Kok, K., & Verburg, P. H. (2007). Integrated Assessment of the land system: The future of land use. Land use policy, 3(24), 517-520.

Lee D. R., & Sallee G. T. (1970). A method of measuring shape. Geographical Review, 60(4), 555–563.

Li X., Gong P., Yu L., & Hu T. (2017, September). A segment derived patch-based logistic cellular automata for urban growth modeling with heuristic rules. Computers, Environment and Urban Systems, (65), 140–149.

Liu X., Sun R., Yang Q., Su G., & Qi W. (2012). Simulating urban expansion using an improved SLEUTH model. Journal of Applied Remote Sensing, 6(1), 1-20.

Loibl W., & Toetzer T. (2003). Modeling growth and densification processes in suburban regions-simulation of landscape transition with spatial agents. Environmental Modelling & Software, 18(6), 553-563.

Mahiny A. S., & Clarke K. C. (2012). Guiding sleuth land-use/land-cover change modeling using multicriteria evaluation: towards dynamic sustainable land use planning. Environment and Planning B: Planning and Design, 39(5), 925–945.

Manandhar, R., Odeh, I., & Ancev, T. (2009). Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sensing, 1(3), 330-344.

Marchal, P. (1998). John von Neumann: The founding father of artificial life. Artificial Life, 4(3), 229-235.

Moghadam, S. A., Karimi, M., & Habibi, K. (2018). Simulating urban growth in a megalopolitan area using a patch‐based cellular automata. Transactions in GIS, 22(1), 249-268.

Mustafa, A., Cools, M., Saadi, I., & Teller, J. (2017). Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69, 529-540.

Oueslati, W., Alvanides, S., & Garrod, G. (2015). Determinants of urban sprawl in European cities. Urban Studies, 52(9), 1594-1614.

Ozturk, D. (2015). Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Remote Sensing, 7(5), 5918-5950.

Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the association of American Geographers, 93(2), 314-337.

Pramanik, M. M. A., & Stathakis, D. (2016). Forecasting urban sprawl in Dhaka city of Bangladesh. Environment and Planning B: Planning and Design, 43(4), 756-771.

Ratcliffe, M., Burd, C., Holder, K., & Fields, A. (2016, December). Defining rural at the US Census Bureau. American community survey and geography brief, 1-8.

Rimal, B., Zhang, L., Keshtkar, H., Haack, B., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS International Journal of Geo-Information, 7(4), 154.

Rocha, F. J. P. S. (2012). Sistemas complexos modelação e geosimulação da evolução de padrões de uso e ocupação do solo [Complex systems, modelling and geosimulation of the evolution of patterns of land use and occupation] (Doctoral Dissertation). Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, Portugal.

Rodríguez, A., & Meneses, J. (2011). Transformaciones rurales en América Latina y sus relaciones con la población rural. Documento presentado en la “Reunión de expertos sobre población, territorio y desarrollo sostenible”, Comisión Económica para América Latina y el Caribe (CEPAL), Santiago de Chile, 16-17 August.

Rozenstein, O., & Karnieli, A. (2011). Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Applied Geography, 31(2), 533-544.

Santé I., Garcı́a A. M., Miranda D., & Crecente R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96 (2), 108–122.

Sarkar, P. (2000). A brief history of cellular automata. ACM Computing Surveys, 32(1), 80-107.

Schelling, T. C. (1971). Dynamic models of segregation. Journal of mathematical sociology, 1(2), 143-186.

Shen Z., Kawakami M., & Kawamura I. (2009). Geosimulation model using geographic automata for simulating land-use patterns in urban partitions. Environment and planning B: Planning and Design, 36(5), 802–823.

Silva A. C. (2013). Identificação das Áreas de Vulnerabilidade Socioambiental Mediante Lógica Fuzzy – Estudo no Município de Ponta Grossa [Identification of Social and Environmental Vulnerable Areas using Fuzzy Logic - A study in Ponta Grossa], PR. (Master Dissertation). Universidade Estadual de Ponta Grossa, Brazil.

Sohl T. L., & Claggett P. R. (2013). Clarity versus complexity: Land-use modeling as a practical tool for decision-makers. Journal of Environmental Management, 129: 235–243.

Torrens P. M., & O’Sullivan D. (2001). Cellular automata and urban simulation: where do we go from here?. Environment and Planning B: Planning and Design, 28(2), 163–168.

Triantakonstantis D., & Mountrakis G. (2012). Urban growth prediction: a review of computational models and human perceptions. Journal of Geographic Information System, 4(6), 555–587.

United Nations. (2018). 2018 revision of world urbanization prospects.

Volkery A., Ribeiro T., Henrichs T., & Hoogeveen Y. (2008). Your vision or my model? Lessons from participatory land use scenario development on a European Scale. Systemic Practice and Action Research, 21(6), 459–477.

Wahyudi, A. (2016). Modelling urban growth: Integrating both physical and human dimensions in developing world context. PhD Thesis, University of Queensland, Australia.

Yuan, J., Zheng, Y., & Xie, X. (2012, August). Discovering regions of different functions in a city using human mobility and POIs. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM: New York, USA.


Licencia Creative Commons

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

GeoFocus es la revista del Grupo de Tecnologías de la Información Geográfica de la Asociación de Geógrafos Españoles. Recibe soporte institucional y técnico de RedIRIS (Red Española de I+D soportada por el Gobierno de España), de la FECYT (Fundación Española para la Ciencia y la Tecnología) y Grumets (Grupo de Investigación Métodos y Aplicaciones en Teledetección y Sistemas de Información Geográfica).