ANÁLISIS COMPARATIVO DE MÉTODOS PARA LA ESTIMACIÓN DE LA EMISIVIDAD EN LA BANDA TÉRMICA DEL SENSOR TM DE LANDSAT-5

Maria Mira Sarrió, Javier Gordillo, Óscar González-Guerrero, Xavier Pons

Resumen


El objetivo de este trabajo es comparar las estimaciones de emisividad correspondientes a la banda térmica del sensor TM de Landsat-5 obtenidas según tres algoritmos. Como datos de partida se consideran las medidas de reflectancia de TM en el espectro solar y una clasificación de cubiertas del suelo obtenida del mismo sensor. La zona de estudio se sitúa en el Delta del Ebro y sus alrededores. La metodología seguida se basa en la intercomparación de las estimaciones de emisividad, su análisis a nivel espacio-temporal, y su validación con datos terreno. El análisis demostró una discrepancia entre métodos aceptable, considerando el error de medida de la emisividad (i.e., 0.005), variable según el tipo de cubierta. Su comparación con medidas terreno mostró asimismo la bondad de las estimaciones. Además, el estudio pone en evidencia la capacidad de los sensores remotos para detectar un aumento significativo de la emisividad de los suelos con su contenido de humedad.

Palabras clave


emisividad; infrarrojo térmico; Landsat; TM; cubiertas del suelo; NDVI; fracción de cubierta vegetal

Texto completo:

PDF

Referencias


Anton, Y.A., Ross, Y.K. (1990): “Emissivity of a soil vegetation system”, Soviet Journal of Remote Sensing, 7, pp. 859–869.

Baldridge, A. M., Hook, S. J., Grove, C. I., Rivera, G. (2009): “The ASTER spectral library version 2.0”, Remote Sensing of Environment, 113, 4, pp. 711–715.

Becker, F., Li, Z.-L. (1990): “Properties and comparision of Temperature -independent spectral indices with NDVI for Hapex data”, Remote Sensing of Environment, 32, pp. 17–33.

Buettner, K. J. K., Kern, C.D. (1965): “The determination of infrared emissivities of terrestrial surzfaces,” Journal of Geophysical Research, 70, pp. 1329–1337.

Caselles, E., Sobrino, J.A. (1989): “Determination of frost in orange groves from NOAA-9 AVHRR data”, Remote Sensing of Environment, 29, pp.135–146.

Caselles, E., Valor, E., Abad, F., Caselles, V. (2012): “Automatic classification-based generation of thermal infrared land surface emissivity maps using AATSR data over Europe”, Remote Sensing of Environment, 124, pp.321–333.

Coll, C., Caselles, V., Galve, J.M., Valor, E., Niclòs, R., Sánchez, J., Rivas, R. (2005): “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data”, Remote Sensing of Environment, 97, pp. 288–300.

Coll, C., Valor, E., Galve, J.M., Mira, M., Bisquert, M., García-Santos, V., Caselles, E., Caselles, V. (2012): “Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer”, Remote Sensing of Environment, 116, pp. 211–225.

Coll, C., Valor, E., Caselles, V., Niclòs, R. (2003): “Adjusted Normalized Emissivity Method for surface temperature and emissivity retrieval from optical and thermal infrared remote sensing data”, Journal of Geophysical Research, 108(D23):4739, doi:10.1029/2003JD003688.

Dana, R.W. (1969): “Measurement of 8–14 micron emissivity of igneous rocks and mineral surfaces”, Goddard Space Flight Center, Greenbelt, MD, NASA Sci. Rep. NSG-632.

Dash, P., Göttsche, F.M., Olesen, F.S. (2002): “Potential of MSG for surface temperature and emissivity estimation: considerations for real-time applications”, International Journal of Remote Sensing, 23, 20, pp. 4511–4518.

Dash, P., Göttsche, F.M., Olesen, F.S., Fischer, H. (2005): “Separating surface emissivity and temperature using two-channel spectral indices and emissivity composites and comparison with a vegetation fraction method”, Remote Sensing of Environment, pp. 961–17.

François, C., Ottlé, C., Prévot, L. (1997): “Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage temperatures using two directional measurements”, International Journal of Remote Sensing, 18, pp. 2587–2621.

Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S., Kahle, A.B. (1998): “A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images”, Ieee Transactions on Geoscience and Remote Sensing, 36, pp. 1113–1126.

Jacob, F., Petitcolin, F., Schmugge, T., Vermote, E., Ogawa, K., French, A. (2004): “Comparison of land surface emissivity and radiometric temperature from MODIS and ASTER sensors”, Remote Sensing of Environment, 83, pp. 1–18.

Kealy, P.S., Hook, S.J. (1993): “Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures”, IEEE Transactions of Geoscience and Remote Sensing, 31, 6, pp. 1155–1164.

Li, Z.L., Becker, F. (1993): “Feasibility of land surface temperature and emissivity determination from AVHRR data”, Remote Sensing of Environment, 43, pp. 67–85.

Mira, M., Valor, E., Boluda, R., Caselles, V., Coll, C. (2007): “Influence of soil water content on the thermal infrared emissivity of bare soils: Implication for land surface temperature determination”, Journal of Geophysical Research, 12, F04003, doi: 10.1029/2007JF000749.

Mira, M., Valor, E., Caselles, V., Rubio, E., Coll, C., Galve, J.M., Niclòs, R., Sánchez, J.M., Boluda, R. (2010): “Soil moisture effect on thermal infrared (8-13 m) emissivity”, IEEE Transactions on Geoscience and Remote Sensing, 48, 5, pp. 2251–2260.

Mira, M., Olioso, A., Gallego-Elvira, B., Courault, D., Garrigues, S., Marloie, O., Hagolle, O., Guillevic, P., Boulet, G. (2015); “Uncertainty assessment of surface net radiation derived from Landsat images”, Remote Sensing of Environment, 175, pp. 251–270.

Nerry, F., Labed, J., Stoll, M.P. (1990a): “Spectral properties of land surfaces in the thermal infrared band. Part I: Laboratory measurements of absolute spectral emissivity signatures”, Journal of Geophysical Research, 95, B5, pp. 7027-7044.

Nerry, F., Labed, J., Stoll, M.P. (1990b): “Spectral properties of land surfaces in the thermal infrared band. Part II: Field method for spectrally averaged emissivity measurements”, Journal of Geophysical Research, 95, B5, pp. 7045-7062.

Norman, J.M., Becker, F. (1995): “Terminology in thermal infrared remote-sensing of natural surfaces”, Agricultural and Forest Meteorology, 77, pp. 153–166.

Olioso, A. (1995): “Simulating the relationship between thermal emissivity and the normalized difference vegetation index”, International Journal of Remote Sensing, 16, 16, pp. 3211–3216.

Olioso, A., Sòria, G., Sobrino, J., Duchemin, B. (2007): “Evidence of low land surface termal infrared emissivity in the presence of dry vegetation”, IEEE Geoscience and Remote Sensing Letters, 4, pp. 112–116.

Palà, V., Pons, X. (1995): “Incorporation of relief in polynomial-based geometric corrections”, Photogrammetric Engineering and Remote Sensing, 61(7), pp. 935-944.

Payan, V., Royer, A. (2004): “Analysis of the Temperature Emissivity Separation (TES) algorithm applicability and sensitivity”, International Journal of Remote Sensing, 25, pp. 15–37.

Peres, L., DaCamara, C. (2004): “Land surface temperature and emissivity estimation based on the two-temperature method: sensitivity analysis using simulated MSG/SEVIRI data”, Remote Sensing of Environment, 91, pp. 377–389.

Pons, X., Moré, G., Pesquer, L. (2010): “Automatic matching of Landsat image series to high resolution orthorectified imagery”, Proceedings of the ESA Living Planet Symposium, CD-ROM edition. ESA reference document: SP-686. ESA Living Planet Symposium Bergen (Noruega).

Pons, X., Pesquer, L., Cristóbal, J., González-Guerrero, O. (2014): “Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images”, International Journal of Applied Earth Observations and Geoinformation, 33, pp. 243–254.

Pons, X., Solé-Sugrañes, L. (1994): “A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data”, Remote Sensing of Environment, 48, pp. 191–204.

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C. (1974): “Monitoring the vernal advancement of retrogradation of natural vegetation”, NASA/GSFC, Type III, Final Report, Greenbelt, MD, p. 371.

Rubio, E., Caselles, V., Badenas, C. (1997): “Emissivity measurements of several soils and vegetation types in the 8–14 μm wave band: analysis of two field methods”, Remote Sensing of Environment, 59, pp. 490–521.

Rubio, E., Caselles, V., Coll, C., Valor, E., Sospedra, F. (2003): “Thermal-infrared emissivities of natural surfaces: improvements on the experimental set-up and new measurements”, International Journal of Remote Sensing, 24, 24, 5379-5390.

Salisbury, J.W., D'Aria, D.M. (1992a): “Emissivity of terrestrial materials in the 8-14 µm atmospheric window”, Remote Sensing of Environment, 42, 2, pp. 83–106.

Salisbury, J.W., D'Aria, D.M. (1992b): “Infrared (8–14 μm) remote sensing of soil particle size”, Remote Sensing of Environment, 42, 2, pp. 157–165.

Seguin, B., Becker, F., Phulpin, T., Gu, X., Guyot, G., Kerr, Y., King, C., Lagouarde, J., Ottlé, C., Stoll, M., Tabbagh, T., Vidal, A. (1999): “IRSUTE: a minisatellite project for land surface heat flux estimation from field to regional scale”, Remote Sensing of Environment, 68, pp. 357–369.

Sobrino, J., El Kharraz, J., Li, Z.L. (2003): “Surface temperature and water vapor retrieval from MODIS data”, International Journal of Remote Sensing, 24(24):5161–5182.

Sobrino, J., Jiménez-Muñoz, J., El-Kharraz, J., Gómez, M., Romaguera, M., Sòria, G. (2004a): “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site”, International Journal of Remote Sensing, 25, 1, pp. 215–230.

Sobrino, J., Jiménez-Muñoz, J., Paolini, L. (2004b): “Land surface temperature retrieval from Land-sat TM 5”, Remote Sensing of Environment, 90, pp. 434–440.

Sobrino, J.A., Raissouni, N. (2000); “Toward remote sensing methods for land cover dynamic monitoring: application to Morocco”, International Journal of Remote Sensing, 21, pp. 353–366.

Sobrino, J., Sòria, G., Prata, A.J. (2004c): “Surface temperature retrieval from Along Track Scanning Radiometer 2 data: Algorithms and validation”, Journal of Geophysical Research, 109D11101, doi:10.1029/2003JD004212.

Sòria, G., Sobrino, J. (2006): “Envisat/AATSR derived land surface temperature over a heterogeneous region”, Remote Sensing of Environment, 111(4), 409-422.

Valor, E., Caselles, V. (1996): “Mapping land surface emissivity from NDVI: Application to European, African, and South American areas”, Remote Sensing of Environment, 57, pp. 167–184.

Van de Griend, A.A., Owe, M. (1993): “On the relationship between thermal emissivity and the normalized difference vegetation index surfaces”, International Journal of Remote Sensing, 14, 6, pp. 1119-1131.

Wan, Z.M., Dozier, J. (1989): “Land-surface temperature measurement from space: physical principles and inverse modeling”, IEEE Transactions on Geoscience and Remote Sensing, 27, 268-278, doi: 10.1109/36.17668.

Wan, Z., Zhang, Y., Zhang, Q., Li, Z.L. (2002): “Validation of the land surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data”, Remote Sensing of Environment, 83, pp. 163–180.

Wan, Z., Zhang, Y., Zhang, Q., Li, Z.L. (2004): “Quality assessment and validation of the MODIS global land surface temperature”, International Journal of Remote Sensing, 25, pp. 261–274.

Wittich, K.P. (1997): “Some simple relationship between land-surface emissivity, greenness and the plant cover fraction for use in satellite remote sensing”, International Journal of Biometeorology, 41, pp. 58–64.

WWW1. GlobCover Portal. http://due.esrin.esa.int/page_globcover.php

WWW2. CORINE Land Cover. https://www.ign.es/ign/layoutIn/corineLandCover.do

WWW3. Geoportal SIOSE. http://www.siose.es/

WWW4. ASTER Spectral Library. http://speclib.jpl.nasa.gov/




DOI: http://dx.doi.org/10.21138/GF.512

Licencia Creative Commons

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.


GeoFocus es la revista del Grupo de Tecnologías de la Información Geográfica de la Asociación de Geógrafos Españoles. Recibe soporte institucional y técnico de RedIRIS (Red Española de I+D soportada por el Gobierno de España), de la FECYT (Fundación Española para la Ciencia y la Tecnología) y Grumets (Grupo de Investigación Métodos y Aplicaciones en Teledetección y Sistemas de Información Geográfica).